हिंदी

The Value of the Determinant ∣ ∣ ∣ ∣ a − B B + C a B − C C + a B C − a A + B C ∣ ∣ ∣ ∣ (A) a 3 + B 3 + C 3 (B) 3bc (C) a 3 + B 3 + C 3 − 3 a B C (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]



विकल्प

  • \[a^3 + b^3 + c^3\]

  • 3bc

  • \[a^3 + b^3 + c^3 - 3abc\]

  • none of these

MCQ

उत्तर

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]
\[ = \begin{vmatrix}- b & b + c + a & a \\ - c & c + a + b & b \\ - a & a + b + c & c\end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_3\text{ and }C_2 \to C_2 + C_3 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\begin{vmatrix}b & 1 & a \\ c & 1 & b \\ a & 1 & c\end{vmatrix} \left[\text{ Taking }\left( - 1 \right)\text{ common from }C_1\text{ and }\left( a + b + c \right)\text{ common from }C_2 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\begin{vmatrix}b & 1 & a \\ c - b & 0 & b - a \\ a - b & 0 & c - a\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left[ - \left( c - b \right)\left( c - a \right) + \left( b - a \right)\left( a - b \right) \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left[ - c^2 + ac + bc - ab + ba - b^2 - a^2 + ab \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left( - a^2 - b^2 - c^2 + ab + bc + ac \right)\]
\[ = \left( a + b + c \right)\left( a^2 + b^2 + c^2 - ab - bc - ac \right)\]
\[ = a^3 + a b^2 + a c^2 - a^2 b - abc - a^2 c + b a^2 + b^3 + b c^2 - a b^2 - b^2 c - abc + c a^2 + c b^2 + c^3 - acb - b c^2 - a c^2 \]
\[ = a^3 + b^3 + c^3 - 3abc\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.7 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.7 | Q 24 | पृष्ठ ९५

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Given: x + 2y = 1
            3x + y = 4


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


If A is a singular matrix, then write the value of |A|.

 

If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6


If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.


Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×