Advertisements
Advertisements
Question
The value of the determinant
Options
\[a^3 + b^3 + c^3\]
3bc
\[a^3 + b^3 + c^3 - 3abc\]
none of these
Solution
\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]
\[ = \begin{vmatrix}- b & b + c + a & a \\ - c & c + a + b & b \\ - a & a + b + c & c\end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_3\text{ and }C_2 \to C_2 + C_3 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\begin{vmatrix}b & 1 & a \\ c & 1 & b \\ a & 1 & c\end{vmatrix} \left[\text{ Taking }\left( - 1 \right)\text{ common from }C_1\text{ and }\left( a + b + c \right)\text{ common from }C_2 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\begin{vmatrix}b & 1 & a \\ c - b & 0 & b - a \\ a - b & 0 & c - a\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left[ - \left( c - b \right)\left( c - a \right) + \left( b - a \right)\left( a - b \right) \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left[ - c^2 + ac + bc - ab + ba - b^2 - a^2 + ab \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left( - a^2 - b^2 - c^2 + ab + bc + ac \right)\]
\[ = \left( a + b + c \right)\left( a^2 + b^2 + c^2 - ab - bc - ac \right)\]
\[ = a^3 + a b^2 + a c^2 - a^2 b - abc - a^2 c + b a^2 + b^3 + b c^2 - a b^2 - b^2 c - abc + c a^2 + c b^2 + c^3 - acb - b c^2 - a c^2 \]
\[ = a^3 + b^3 + c^3 - 3abc\]
APPEARS IN
RELATED QUESTIONS
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
If \[a, b\] and c are all non-zero and
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Prove that :
Prove that :
2x − y = 17
3x + 5y = 6
2x − y = − 2
3x + 4y = 3
9x + 5y = 10
3y − 2x = 8
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
Write the value of the determinant
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
x + y = 1
x + z = − 6
x − y − 2z = 3
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.