Advertisements
Advertisements
प्रश्न
The value of the determinant
पर्याय
\[a^3 + b^3 + c^3\]
3bc
\[a^3 + b^3 + c^3 - 3abc\]
none of these
उत्तर
\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]
\[ = \begin{vmatrix}- b & b + c + a & a \\ - c & c + a + b & b \\ - a & a + b + c & c\end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_3\text{ and }C_2 \to C_2 + C_3 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\begin{vmatrix}b & 1 & a \\ c & 1 & b \\ a & 1 & c\end{vmatrix} \left[\text{ Taking }\left( - 1 \right)\text{ common from }C_1\text{ and }\left( a + b + c \right)\text{ common from }C_2 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\begin{vmatrix}b & 1 & a \\ c - b & 0 & b - a \\ a - b & 0 & c - a\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left[ - \left( c - b \right)\left( c - a \right) + \left( b - a \right)\left( a - b \right) \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left[ - c^2 + ac + bc - ab + ba - b^2 - a^2 + ab \right]\]
\[ = \left( - 1 \right)\left( a + b + c \right)\left( - a^2 - b^2 - c^2 + ab + bc + ac \right)\]
\[ = \left( a + b + c \right)\left( a^2 + b^2 + c^2 - ab - bc - ac \right)\]
\[ = a^3 + a b^2 + a c^2 - a^2 b - abc - a^2 c + b a^2 + b^3 + b c^2 - a b^2 - b^2 c - abc + c a^2 + c b^2 + c^3 - acb - b c^2 - a c^2 \]
\[ = a^3 + b^3 + c^3 - 3abc\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
9x + 5y = 10
3y − 2x = 8
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.