Advertisements
Advertisements
प्रश्न
Prove that :
उत्तर
\[Let \Delta_1 = \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}, \Delta_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}, \Delta_3 = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z \end{vmatrix} \text{ and }\Delta_4 = xyz\left( x - y \right)\left( y - z \right)\left( z - x \right) \left( x + y + z \right)\]
Now,
\[ \Delta_{1 =} \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}\]
Using the property that if two rows ( or columns ) of a determinant are interchanged, the value of the determinant becomes negetive, we get
\[ \Rightarrow \Delta_1 = \left( - 1 \right) \begin{vmatrix} x & z & y\\ x^2 & z^2 & y^2 \\ x^4 & z^4 & y^4 \end{vmatrix} \left[ \because C_1 \leftrightarrow C_2 \right]\]
\[ = \left( - 1 \right)\left( - 1 \right)\begin{vmatrix} x & y & z\\x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} \left[ \because C_2 \leftrightarrow C_3 \right]\]
\[ = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} = \Delta_2 . . . (1)\]
\[ = \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\x & y & z\\ x^4 & y^4 & z^4 \end{vmatrix} \left[\text{ Applying }R_1 \leftrightarrow R_2 \right]\]
\[ = \left( - 1 \right) \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} \left[\text{ Applying }R_2 \leftrightarrow R_3 \right] \]
\[ = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} = \Delta_3 . . . (2)\]
\[Thus, \]
\[ \Delta_1 = \Delta_2 = \Delta_3 \left[\text{ From eqs }. (1)\text{ and }(2) \right]\]
\[∆_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}\]
\[ = xyz \begin{vmatrix} 1 & 1 & 1\\x & y^{} & z\\ x^3 & y^3 & z^3 \end{vmatrix} \left[\text{ Taking out common factor x from } C_{1 ,}\text{ y from }C_2\text{ and z from }C_3 \right]\]
\[ = xyz\begin{vmatrix} 0 & 0 & 1\\ x - y & y - z^{} & z\\ x^3 - y^3 & y^3 - z^3 & z^3 \end{vmatrix} \left[\text{ Applying }C \to C_1 \hspace{0.167em} - C_2\text{ and }C_2 \to C_2 - C_3 \right]\]
\[ = xyz\left( x - y \right) \left( y - z \right) \begin{vmatrix} 0 & 0 & 1\\1 & 1 & z\\ x^2 + 2xy + y^2 & y^2 + 2yz + z^2 & z^3 \end{vmatrix} \left[ \because \left( a^3 - b^3 \right) = \left( a - b \right)\left( a^2 + ab + b^2 \right) \right] \left[\text{ Taking out common factor }\left( x - y \right)\text{ from }C_1\text{ and }\left( y - z \right)\text{ from }C_2 \right]\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ 1 \times \begin{vmatrix} 1 & 1 \\ x^2 + xy + y^2 & y^2 + yz + z^2 \end{vmatrix} \right\} \left[\text{ Expanding along }R_1 \right]\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y^2 + yz + z^2 - x^2 - xy - y^2 \right\}\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ yz - xy + z^2 - x^2 \right\}\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y\left( z - x \right) + \left( z - x \right)\left( z + x \right) \right\}\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( y + x + z \right)\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( x + y + z \right)\]
\[ = ∆_4 \]
\[Thus, \]
\[ ∆_1 = ∆_2 = ∆_3 = ∆_4 \]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
2x − y = 1
7x − 2y = −7
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
The value of the determinant
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Solve the following system of equations by matrix method:
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.