Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
उत्तर
\[\text{ Let }\frac{1}{x}\text{ be }a,\frac{1}{y}\text{ be } b \text{ and }\frac{1}{z}\text{ be }c.\]
Here,
\[A = \begin{bmatrix}2 & 3 & 10 \\ 4 & - 6 & 5 \\ 6 & 9 & - 20\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & 3 & 10 \\ 4 & - 6 & 5 \\ 6 & 9 & - 20\end{vmatrix}\]
\[ = 2\left( 120 - 45 \right) - 3\left( - 80 - 30 \right) + 10(36 + 36)\]
\[ = 150 + 330 + 720\]
\[ = 1200\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 6 & 5 \\ 9 & - 20\end{vmatrix} = 75, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}4 & 5 \\ 6 & - 20\end{vmatrix} = 110, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}4 & - 6 \\ 6 & 9\end{vmatrix} = 72\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 10 \\ 9 & - 20\end{vmatrix} = 150, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 10 \\ 6 & - 20\end{vmatrix} = - 100, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 3 \\ 6 & 9\end{vmatrix} = 0\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 10 \\ - 6 & 5\end{vmatrix} = 75, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 10 \\ 4 & 5\end{vmatrix} = 30, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 3 \\ 4 & - 6\end{vmatrix} = - 24\]
\[adj A = \begin{bmatrix}75 & 110 & 72 \\ 150 & - 100 & 0 \\ 75 & 30 & - 24\end{bmatrix}^T \]
\[ = \begin{bmatrix}75 & 150 & 75 \\ 110 & - 100 & 30 \\ 72 & 0 & - 24\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1200} \begin{bmatrix}75 & 150 & 75 \\ 110 & - 100 & 30 \\ 72 & 0 & - 24\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{1200} \begin{bmatrix}75 & 150 & 75 \\ 110 & - 100 & 30 \\ 72 & 0 & - 24\end{bmatrix}\begin{bmatrix}4 \\ 1 \\ 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{1200}\begin{bmatrix}300 + 150 + 150 \\ 440 - 100 + 60 \\ 288 - 48\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}a \\ b \\ c\end{bmatrix} = \frac{1}{1200}\begin{bmatrix}600 \\ 400 \\ 240\end{bmatrix}\]
\[ \Rightarrow x = \frac{1}{a} = \frac{1200}{600}, y = \frac{1}{b} = \frac{1200}{400}\text{ and }z = \frac{1}{c} = \frac{1200}{240}\]
\[ \therefore x = 2, y = 3\text{ and }z = 5\]
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
Write the value of
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.