मराठी

Find the Inverse of the Following Matrix, Using Elementary Transformations: a = ⎡ ⎢ ⎣ 2 3 1 2 4 1 3 7 2 ⎤ ⎥ ⎦ - Mathematics

Advertisements
Advertisements

प्रश्न

Find the inverse of the following matrix, using elementary transformations: 

A=[231241372]

बेरीज

उत्तर

A=[231241372] 

AA-1 =I 

[231241372]A-1=[100010001] 

R2 → R2 - R1

R3 → R3 - R1

[231010141]A-1=[100-110-101] 

R1 ↔ R

[141010231]A-1=[-101-110100] 

R3 → R3 - 2R1

[1410100-5-1]A-1=[-101-11030-2] 

R1 → R1 - 4R2

R3 → R3 - 5R2

[10101000-1]A-1=[3-41-110-25-2] 

R1R1+R3

[10001000-1]A-1=[11-1-110-25-2] 

R3-R3

[100010001]A-1=[11-1-1102-52] 

I.A1=[11-1-1102-52] 

A1=[11-1-1102-52] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/3

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve the system of the following equations:

2x+3y+10z=4

4x-6y+5z=1

6x+9y-20x=2


Evaluate

|235712341| by two methods.

 

Without expanding, show that the value of the following determinant is zero:

|a+b2a+b3a+b2a+b3a+b4a+b4a+b5a+b6a+b|


Evaluate the following:

|a+xyzxa+yzxya+z|


|a(b2+c2a2)2b32c32a3b(c2+a2b2)2c32a32b3c(a2+b2c2)|=abc(a2+b2+c2)3


Prove that :

|abc2a2a2bbca2b2c2ccab|=(a+b+c)3

 


Prove that :

|(b+c)2a2bc(c+a)2b2ca(a+b)2c2ab|=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)


Prove that :

|(a+1)(a+2)a+21(a+2)(a+3)a+31(a+3)(a+4)a+41|=2

 


Prove that :

|a2a2(bc)2bcb2b2(ca)2cac2c2(ab)2ab|=(ab)(bc)(ca)(a+b+c)(a2+b2+c2)

|a+b+ccbca+b+cabaa+b+c|=2(a+b)(b+c)(c+a)

5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


3x + y = 5
− 6x − 2y = 9


If A is a singular matrix, then write the value of |A|.

 

If A=[1231] and B=[1432], find |AB|


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Find the value of the determinant |222324232425242526|.


If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
2x3y+3z=10
1x+1y+1z=10
3x1y+2z=13


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


Write the value of |a-bb-cc-ab-cc-aa-bc-aa-bb-c|


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.