Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let LHS }= ∆ = \begin{vmatrix} a + b + c & - c & - b\\ - c & a + b + c & - a\\ - b & - a & a + b + c \end{vmatrix}\]
\[ = \begin{vmatrix} a & - c & - b\\b & a + b + c & - a\\c & - a & a + b + c \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 + C_3 \right]\]
\[ = \begin{vmatrix} a + b & a + b & - \left( a + b \right) \\b + c & b + c & b + c \\c & - a & a + b + c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2\text{ and }R_2 \to R_2 + R_3 \right]\]
\[ = \left( a + b \right)\left( b + c \right) \begin{vmatrix} 1 & 1 & - 1 \\ 1 & 1 & 1\\ c & - a & a + b + c \end{vmatrix} \left[\text{ Taking out common factor from }R {}_1\text{ and }R_2 \right]\]
\[ = \left( a + b \right)\left( b + c \right)\begin{vmatrix} 0 & 0 & - 2\\ 1 & 1 & 1 \\ c & - a & a + b + c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2 \right]\]
\[ = \left( a + b \right)\left( b + c \right)\left\{ \left( - 2 \right)\left( - a - c \right) \right\} \left[\text{ Expanding along }R_1 \right]\]
\[ = 2 \left( a + b \right)\left( b + c \right) \left( c + a \right) \]
\[ = RHS\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Solve the following determinant equation:
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
2x − y = 1
7x − 2y = −7
2x − y = − 2
3x + 4y = 3
2x + 3y = 10
x + 6y = 4
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
x + 2y = 5
3x + 6y = 15
For what value of x, the following matrix is singular?
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Write the value of the determinant
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the value of
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.