मराठी

∣ ∣ ∣ ∣ a + B + C − C − B − C a + B + C − a − B − a A + B + C ∣ ∣ ∣ ∣ = 2 ( a + B ) ( B + C ) ( C + a ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\begin{vmatrix}a + b + c & - c & - b \\ - c & a + b + c & - a \\ - b & - a & a + b + c\end{vmatrix} = 2\left( a + b \right) \left( b + c \right) \left( c + a \right)\]

उत्तर

\[\text{ Let LHS }= ∆ = \begin{vmatrix} a + b + c & - c & - b\\ - c & a + b + c & - a\\ - b & - a & a + b + c \end{vmatrix}\] 
\[ = \begin{vmatrix} a & - c & - b\\b & a + b + c & - a\\c & - a & a + b + c \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 + C_3 \right]\] 
\[ = \begin{vmatrix} a + b & a + b & - \left( a + b \right) \\b + c & b + c & b + c \\c & - a & a + b + c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2\text{ and }R_2 \to R_2 + R_3 \right]\] 
\[ = \left( a + b \right)\left( b + c \right) \begin{vmatrix} 1 & 1 & - 1 \\ 1 & 1 & 1\\ c & - a & a + b + c \end{vmatrix} \left[\text{ Taking out common factor from }R {}_1\text{ and }R_2 \right]\] 
\[ = \left( a + b \right)\left( b + c \right)\begin{vmatrix} 0 & 0 & - 2\\ 1 & 1 & 1 \\ c & - a & a + b + c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2 \right]\] 
\[ = \left( a + b \right)\left( b + c \right)\left\{ \left( - 2 \right)\left( - a - c \right) \right\} \left[\text{ Expanding along }R_1 \right]\] 
\[ = 2 \left( a + b \right)\left( b + c \right) \left( c + a \right) \] 
\[ = RHS\]
Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.2 [पृष्ठ ६०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.2 | Q 31 | पृष्ठ ६०

संबंधित प्रश्‍न

Solve the system of linear equations using the matrix method.

x − y + 2z = 7

3x + 4y − 5z = −5

2x − y + 3z = 12


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


2x − y = 1
7x − 2y = −7


2x − y = − 2
3x + 4y = 3


2x + 3y = 10
x + 6y = 4


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


x + 2y = 5
3x + 6y = 15


For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×