मराठी

Without Expanding, Show that the Value of the Following Determinant is Zero: ∣ ∣ ∣ ∣ ∣ Sin 2 a Cot a 1 Sin 2 B Cot B 1 Sin 2 C Cot C 1 ∣ ∣ ∣ ∣ ∣ , W H E R E a , B , C Are the Angles of δ a B C - Mathematics

Advertisements
Advertisements

प्रश्न

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]

उत्तर

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}\]
\[ = \begin{vmatrix}\sin^2 A - \sin^2 B & \cot A - \cot B & 0 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C - \sin^2 B & \cot C - \cot B & 0\end{vmatrix} \left[ \text{ Applying } R_1 \to R_1 - R_2 \text{ and }R_3 \to R_3 - R_2 \right]\]
\[ = \begin{vmatrix}\sin\left( A + B \right)\sin\left( A - B \right) & \frac{\cos A\sin B - \cos B\sin A}{\sin A\sin B} & 0 \\ \sin^2 B & \cot B & 1 \\ \sin\left( C + B \right)\sin\left( C - B \right) & \frac{\cos C\sin B - \cos B\sin C}{\sin B\sin C} & 0\end{vmatrix}\]
\[ = \begin{vmatrix}\sin\left( \pi - C \right)\sin\left( A - B \right) & \frac{- \sin\left( A - B \right)}{\sin A\sin B} & 0 \\ \sin^2 B & cot B & 1 \\ \sin\left( \pi - A \right)\sin\left( C - B \right) & \frac{- \sin\left( C - B \right)}{\sin B\sin C} & 0\end{vmatrix} \left[ \because A + B + C = \pi \right]\]
\[ = \begin{vmatrix}\sin C\sin\left( A - B \right) & \frac{- \sin\left( A - B \right)}{\sin A\sin B} & 0 \\ \sin^2 B & \frac{\cos B}{\sin B} & 1 \\ \sin A\sin\left( C - B \right) & \frac{- \sin\left( C - B \right)}{\sin B\sin C} & 0\end{vmatrix}\]
\[ = \frac{\sin\left( A - B \right)\sin\left( C - B \right)}{\sin B}\begin{vmatrix}\sin C & \frac{- 1}{\sin A} & 0 \\ \sin^2 B & \cos B & 1 \\ \sin A & \frac{- 1}{\sin C} & 0\end{vmatrix}\]
\[ = \frac{\sin\left( A - B \right)\sin\left( C - B \right)}{\sin B\sin A\sin C}\begin{vmatrix}\sin C\sin A & - 1 & 0 \\ \sin^2 B & \cos B & 1 \\ \sin A\sin C & - 1 & 0\end{vmatrix} \left[ \text{ Applying }R_1 \to \sin A R_1\text{  and }R_3 \to \sin C R_3 \right]\]
\[ = \frac{\sin\left( A - B \right)\sin\left( C - B \right)}{\sin B\sin A\sin C}\begin{vmatrix}0 & 0 & 0 \\ \sin^2 B & \cos B & 1 \\ \sin A\sin C & - 1 & 0\end{vmatrix} \left[ \text{ Applying }R_1 \to R_1 - R_3 \right]\]
\[ = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.2 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.2 | Q 2.17 | पृष्ठ ५७

संबंधित प्रश्‍न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


Show that

\[\begin{vmatrix}x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c\end{vmatrix} =\text{ 0 where a, b, c are in A . P .}\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


System of equations x + y = 2, 2x + 2y = 3 has ______


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×