Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
उत्तर
The given system of equations can be written in matrix form as folllows:
\[\begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix} \binom{x}{y} = \binom{ - 2}{ - 3}\]
\[AX=B\]
Here,
\[A = \begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{ - 2}{ - 3}\]
Now,
\[\left| A \right| = \begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix} \]
\[ = 30 - 28\]
\[ = 2 \neq 0 \]
\[\text{ The given system has a unique solution given by }X = A^{- 1} B . \]
\[{ \text{ Let }C}_{ij} {\text{be the cofactors of the elements a}}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \left( 6 \right) = 6 , C_{12} = \left( - 1 \right)^{1 + 2} \left( 4 \right) = - 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \left( 7 \right) = - 7, C_{22} = \left( - 1 \right)^{2 + 2} \left( 5 \right)\]
\[ = 5\]
\[adj A = \begin{bmatrix}6 & - 4 \\ - 7 & 5\end{bmatrix}^T \]
\[ = \begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ \Rightarrow A^{- 1} = \frac{1}{2}\begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ = \frac{1}{2}\begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\binom{ - 2}{ - 3}\]
\[ = \frac{1}{2}\binom{ - 12 + 21}{8 - 15}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{9}{2}}{\frac{- 7}{2}}\]
\[ \therefore x = \frac{9}{2}\text{ and } y = \frac{- 7}{2}\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
x + 2y = 5
3x + 6y = 15
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
The value of the determinant
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.