Advertisements
Advertisements
प्रश्न
उत्तर
Let
Now,
\[∆ = \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix}\]
\[ = \begin{vmatrix}p & b & c \\ 0 & q - b & c - r \\ a & b & r\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ = p\left[ r\left( q - b \right) - b\left( c - r \right) \right] + a\left[ b\left( c - r \right) - c\left( q - b \right) \right] \left[\text{ Expanding along first column }\right]\]
\[ = pr\left( q - b \right) + pb\left( r - c \right) - ab\left( r - c \right) - ac\left( q - b \right)\]
\[ = \left( pr - ac \right)\left( q - b \right) + b\left( p - a \right)\left( r - c \right)\]
\[\text{ Since, }∆ = 0 . \]
\[ \therefore \left( pr - ac \right)\left( q - b \right) + b\left( p - a \right)\left( r - c \right) = 0\]
\[ \Rightarrow \frac{pr - ac}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{pr - ar + ar - ac}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{r\left( p - a \right) + a\left( r - c \right)}{\left( p - a \right)\left( r - c \right)} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{r}{r - c} + \frac{a}{p - a} + \frac{b}{q - b} = 0\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = \frac{p}{p - a} + \frac{q}{q - b} - \frac{a}{p - a} - \frac{b}{q - b}\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = \frac{p - a}{p - a} + \frac{q - b}{q - b}\]
\[ \Rightarrow \frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c} = 2\]
\[\text{Hence, the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}\text{ is }2 .\]
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Solve the following determinant equation:
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
2x − y = − 2
3x + 4y = 3
2x + 3y = 10
x + 6y = 4
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
If \[x, y \in \mathbb{R}\], then the determinant
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.