Advertisements
Advertisements
प्रश्न
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
उत्तर
\[\text{ Let }\Delta = \begin{vmatrix} b + c c + a a + b\\c + a a + b b + c\\a + b b + c c + a \end{vmatrix}\]
\[ = \begin{vmatrix} 2( a + b + c ) & 2( a + b + c ) & 2( a + b + c)\\c + a & a + b & b + c\\a + b & b + c & c + a \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2 + R_3 \right]\]
\[ = 2( a + b + c )\begin{vmatrix}1 & 1 & 1 \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix}\]
\[ = 2( a + b + c )\begin{vmatrix} 1 & 0 & 0\\c + a & b - c & b - a\\a + b & c - a & c - b \end{vmatrix}\left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\]
\[ = 2\left( a + b + c \right)\left\{ 1\begin{vmatrix}b - c & b - a \\ c - a & c - b\end{vmatrix} \right\}\]
\[ = 2\left( a + b + c \right)\left\{ \left( b - c \right)\left( c - b \right) - \left( b - a \right)\left( c - a \right) \right\}\]
\[ = - 2\left( a + b + c \right)\left\{ a^2 + b^2 + c^2 - ab - bc - ca \right\}\]
\[ = - \left( a + b + c \right)\left\{ 2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca \right\}\]
\[ = - \left( a + b + c \right)\left\{ \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 \right\}\]
\[\text{ But }\Delta = 0 \left[\text{ Given }\right]\]
\[ \Rightarrow - \left( a + b + c \right)\left\{ \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 \right\} = 0\]
\[ \Rightarrow\text{ Either }\left( a + b + c \right) = 0 or \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 = 0\]
\[ \Rightarrow \left( a + b + c \right) = 0\text{ or }a = b = c\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
2x − y = 1
7x − 2y = −7
Prove that :
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.