Advertisements
Advertisements
प्रश्न
Solve the following determinant equation:
उत्तर
\[\text{ Let }∆ = \begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix}\]
\[ = \begin{vmatrix}3x - 2 & 3 & 3 \\ 3x - 2 & 3x - 8 & 3 \\ 3x - 2 & 3 & 3x - 8\end{vmatrix} \left[\text{ Applying }C_1 = C_1 + C_2 + C_3 \right]\]
\[ = \left( 3x - 2 \right)\begin{vmatrix}1 & 3 & 3 \\ 1 & 3x - 8 & 3 \\ 1 & 3 & 3x - 8\end{vmatrix} \]
\[ = \left( 3x - 2 \right)\begin{vmatrix}1 & 3 & 3 \\ 0 & 3x - 11 & 0 \\ 1 & 3 & 3x - 8\end{vmatrix} \left[\text{ Applying }R_2 \text{ to }R_2 - R_1 \right]\]
\[ = \left( 3x - 2 \right)\begin{vmatrix}1 & 3 & 3 \\ 0 & 3x - 11 & 0 \\ 0 & 0 & 3x - 11\end{vmatrix} \left[\text{ Applying }R_3 \text{ to }R_3 - R_1 \right]\]
\[ ∆ = \left( 3x - 2 \right) \left( 3x - 11 \right)^2 = 0\]
\[x = \frac{2}{3}, \frac{11}{3}, \frac{11}{3}\]
APPEARS IN
संबंधित प्रश्न
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
3x + y = 5
− 6x − 2y = 9
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
System of equations x + y = 2, 2x + 2y = 3 has ______
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.