Advertisements
Advertisements
प्रश्न
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
उत्तर
Let x, y and z denote the number of cars that can be produced of each type . Then,
\[2x + 3y + 4z = 29\]
\[x + y + 2z = 13\]
\[3x + 2y + z = 16\]
Using Cramer's rule, we get
\[D = \begin{vmatrix}2 & 3 & 4 \\ 1 & 1 & 2 \\ 3 & 2 & 1\end{vmatrix}\]
\[ = 2(1 - 4) - 3(1 - 6) + 4(2 - 3)\]
\[ = - 6 + 15 - 4\]
\[ = 5\]
\[ D_1 = \begin{vmatrix}29 & 3 & 4 \\ 13 & 1 & 2 \\ 16 & 2 & 1\end{vmatrix}\]
\[ = 29(1 - 4) - 3(13 - 32) + 4(26 - 16)\]
\[ = - 87 + 57 + 40\]
\[ = 10\]
\[ D_2 = \begin{vmatrix}2 & 29 & 4 \\ 1 & 13 & 2 \\ 3 & 16 & 1\end{vmatrix}\]
\[ = 2(13 - 32) - 29(1 - 6) + 4(16 - 39)\]
\[ = - 38 + 145 - 92\]
\[ = 15\]
\[ D_3 = \begin{vmatrix}2 & 3 & 29 \\ 1 & 1 & 13 \\ 3 & 2 & 16\end{vmatrix}\]
\[ = 2(16 - 26) - 3(16 - 39) + 29(2 - 3)\]
\[ = - 20 + 69 - 29\]
\[ = 20\]
Thus,
\[x = \frac{D_1}{D} = \frac{10}{5} = 2\]
\[y = \frac{D_2}{D} = \frac{15}{5} = 3\]
\[z = \frac{D_3}{D} = \frac{20}{5} = 4\]
Therefore, 2 C1 cars, 3 C2 cars and 4 C3 cars can be produced using the three types of steel.
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
Prove that :
Prove that :
Prove that :
Prove that
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.