मराठी

Solve Each of the Following System of Homogeneous Linear Equations. X + Y − 2z = 0 2x + Y − 3z = 0 5x + 4y − 9z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0

उत्तर

Given: x + y − 2z = 0
            2x + y − 3z = 0              
            5x + 4y − 9z = 0

\[D = \begin{vmatrix}1 & 1 & - 2 \\ 2 & 1 & - 3 \\ 5 & 4 & - 9\end{vmatrix}\] 
\[ = 1( - 9 + 12) - 1( - 18 + 15) - 2(8 - 5)\] 
\[ = 0\] 
So, the system has infinitely many solutions . Putting z = k in the first two equations, we get
\[x + y = 2k\] 
\[2x + y = 3k\] 
Using Cramer's rule, we get
\[x = \frac{D_1}{D} = \frac{\begin{vmatrix}2k & 1 \\ 3k & 1\end{vmatrix}}{\begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix}} = \frac{- k}{- 1} = k\] 
\[y = \frac{D_2}{D} = \frac{\begin{vmatrix}1 & 2k \\ 2 & 3k\end{vmatrix}}{\begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix}} = \frac{- k}{- 1} = k \] 
\[z = k\] 
Clearly, these values satisfy the third equation . 
Thus, 
\[x = y = z = k \left[ k \in R \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.5 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.5 | Q 1 | पृष्ठ ८९

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]


If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]




If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\]  to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.


2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×