हिंदी

Solve Each of the Following System of Homogeneous Linear Equations. X + Y − 2z = 0 2x + Y − 3z = 0 5x + 4y − 9z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0

उत्तर

Given: x + y − 2z = 0
            2x + y − 3z = 0              
            5x + 4y − 9z = 0

\[D = \begin{vmatrix}1 & 1 & - 2 \\ 2 & 1 & - 3 \\ 5 & 4 & - 9\end{vmatrix}\] 
\[ = 1( - 9 + 12) - 1( - 18 + 15) - 2(8 - 5)\] 
\[ = 0\] 
So, the system has infinitely many solutions . Putting z = k in the first two equations, we get
\[x + y = 2k\] 
\[2x + y = 3k\] 
Using Cramer's rule, we get
\[x = \frac{D_1}{D} = \frac{\begin{vmatrix}2k & 1 \\ 3k & 1\end{vmatrix}}{\begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix}} = \frac{- k}{- 1} = k\] 
\[y = \frac{D_2}{D} = \frac{\begin{vmatrix}1 & 2k \\ 2 & 3k\end{vmatrix}}{\begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix}} = \frac{- k}{- 1} = k \] 
\[z = k\] 
Clearly, these values satisfy the third equation . 
Thus, 
\[x = y = z = k \left[ k \in R \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.5 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.5 | Q 1 | पृष्ठ ८९

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}a^2 & a^2 - \left( b - c \right)^2 & bc \\ b^2 & b^2 - \left( c - a \right)^2 & ca \\ c^2 & c^2 - \left( a - b \right)^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]

Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


2x − y = − 2
3x + 4y = 3


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


3x + y = 5
− 6x − 2y = 9


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


Find the value of the determinant 
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]

 


Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.


A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.


Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations: 

x +y + z = 6

y + 3z = 11

and x -2y +z = 0


Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


The system of linear equations

3x – 2y – kz = 10

2x – 4y – 2z = 6

x + 2y – z = 5m

is inconsistent if ______.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×