Advertisements
Advertisements
प्रश्न
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
उत्तर
According to the question,
\[x + y + z = 45 . . . (1)\]
\[ - x + z = 8 . . . (2)\]
\[x + z = 2y \left( \text{ Since the production of first and third product is twice the production of second product }\right)\]
\[x - 2y + z = 0 . . . (3)\]
The given system of equation can be written in matrix form as follows:
\[ \begin{bmatrix}1 & 1 & 1 \\ - 1 & 0 & 1 \\ 1 & - 2 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}45 \\ 8 \\ 0\end{bmatrix}\]
\[AX = B\]
\[A = \begin{bmatrix}1 & 1 & 1 \\ - 1 & 0 & 1 \\ 1 & - 2 & 1\end{bmatrix} X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} B = \begin{bmatrix}45 \\ 8 \\ 0\end{bmatrix}\]
Now,
\[\left| A \right|=1 \left( - 0 + 2 \right) - 1\left( - 1 - 1 \right) + 1\left( 2 - 0 \right)\]
\[ = 2 + 2 + 2\]
\[ = 6\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & 1 \\ - 2 & 1\end{vmatrix} = 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}- 1 & 1 \\ 1 & 1\end{vmatrix} = 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}- 1 & 0 \\ 1 & - 2\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ - 2 & 1\end{vmatrix} = - 3, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 1 & 1\end{vmatrix} = 0, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 1 & - 2\end{vmatrix} = 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 0 & 1\end{vmatrix} = 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ - 1 & 1\end{vmatrix} = - 2, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ - 1 & 0\end{vmatrix} = 1\]
\[adj A = \begin{bmatrix}2 & 2 & 2 \\ - 3 & 0 & 3 \\ 1 & - 2 & 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & - 3 & 1 \\ 2 & 0 & - 2 \\ 2 & 3 & 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{6}\begin{bmatrix}2 & - 3 & 1 \\ 2 & 0 & - 2 \\ 2 & 3 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{6}\begin{bmatrix}2 & - 3 & 1 \\ 2 & 0 & - 2 \\ 2 & 3 & 1\end{bmatrix}\begin{bmatrix}45 \\ 8 \\ 0\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{6}\begin{bmatrix}90 - 24 + 0 \\ 90 + 0 + 0 \\ 90 + 24 + 0\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{6}\begin{bmatrix}66 \\ 90 \\ 114\end{bmatrix}\]
\[ \]
\[ \therefore x = 11, y = 15\text{ and }z = 19\]
Thus, the production level of first, second and third product is 11, 15 and 19, respectively .
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
Prove that :
Prove that :
Prove that :
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
For what value of x, the following matrix is singular?
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
System of equations x + y = 2, 2x + 2y = 3 has ______
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is