हिंदी

The Prices of Three Commodities P, Q And R Are Rs X, Y And Z Per Unit Respectively. A Purchases 4 Units Of R And Sells 3 Units Of P And 5 Units Of Q. B Purchases 3 Units Of Q And Sells 2 - Mathematics

Advertisements
Advertisements

प्रश्न

The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

उत्तर

The prices of three commodities P, Q and R are Rs x, Rs y and Rs z per unit, respectively .
According to the question,
\[3x + 5y - 4z = 6000\]
\[2x - 3y + z = 5000\]
\[ - x + 4y + 6z = 13000\]
The given system of equations can be written in matrix form as follows:
\[ \begin{bmatrix}3 & 5 & - 4 \\ 2 & - 3 & 1 \\ - 1 & 4 & 6\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
\[AX = B\]
Here,
\[A = \begin{bmatrix}3 & 5 & - 4 \\ 2 & - 3 & 1 \\ - 1 & 4 & 6\end{bmatrix} X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} B = \begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
Now,
\[\left| A \right|=3 \left( - 18 - 4 \right) - 5\left( 12 + 1 \right) - 4\left( 8 - 3 \right)\]
\[ = - 66 - 65 - 20\]
\[ = - 151 \neq 0\]
\[\text{ So, }A^{- 1}\text{ exists .} \]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 3 & 1 \\ 4 & 6\end{vmatrix} = - 22, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ - 1 & 6\end{vmatrix} = - 13, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & - 3 \\ - 1 & 4\end{vmatrix} = 5\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}5 & - 4 \\ 4 & 6\end{vmatrix} = - 46, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}3 & - 4 \\ - 1 & 6\end{vmatrix} = 14, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}3 & 5 \\ - 1 & 4\end{vmatrix} = - 17\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}5 & - 4 \\ - 3 & 1\end{vmatrix} = - 7, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}3 & - 4 \\ 2 & 1\end{vmatrix} = - 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}3 & 5 \\ 2 & - 3\end{vmatrix} = - 19\]
\[adj A = \begin{bmatrix}- 22 & - 13 & 5 \\ - 46 & 14 & - 17 \\ - 7 & - 11 & - 19\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 151}\begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{- 151}\begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{- 151}\begin{bmatrix}- 453000 \\ - 151000 \\ - 302000\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}3000 \\ 1000 \\ 2000\end{bmatrix}\]
\[ \therefore x = 3000, y = 1000\text{ and }z = 2000\]
Thus, the prices of the three commodities P, Q and R are Rs 3000, Rs 1000 and Rs 2000 per unit, respectively .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 12 | पृष्ठ १६

संबंधित प्रश्न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Solve system of linear equations, using matrix method.

4x – 3y = 3

3x – 5y = 7


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


5x + 7y = − 2
4x + 6y = − 3


xy = 5
y + z = 3
x + z = 4


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


Find the value of the determinant 
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]

 


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.


A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×