Advertisements
Advertisements
प्रश्न
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
विकल्प
4
2
a + b + c
none of these
उत्तर
\[\Delta = \begin{vmatrix} - 2a & a + b & a + c\\b + a & - 2b & b + c\\c + a & c + b & - 2c \end{vmatrix}
\text{ Let } a + b = 2C, b + c = 2A\text{ and }c + a = 2B . \]
\[ \Rightarrow a + b + b + c + c + a = 2A + 2B + 2C\]
\[ \Rightarrow 2\left( a + b + c \right) = 2\left( A + B + C \right)\]
\[ \Rightarrow a + b + c = A + B + C\]
Also,
\[a = \left( a + b + c \right) - \left( b + c \right) = \left( A + B + C \right) - 2A = B + C - A\]
Similarly,
\[b = C + A - B, c = A + B - C\]
\[\Delta = \begin{vmatrix} 2A - 2B - 2C & 2C & 2B\\ 2C & 2B - 2C - 2A & 2A\\ 2B & 2A & 2C - 2A - 2B \end{vmatrix} = 8 \times \begin{vmatrix} A - B - C & C & B\\ C & B - C - A & A\\ B & A & C - A - B \end{vmatrix} \left[\text{ taking out 2 common from }R_1 R_2 R_3 \right]\]
\[ = 8 \times \begin{vmatrix} A - B & C + B & B\\ B - A & B - C & A\\ B + A & C - B & C - A - B \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 , C_2 \to C_2 + C_3 \right]\]
\[ = 8 \times \begin{vmatrix} \left( A - B \right) & C + B & B\\ 0 & 2B & A + B\\ 2B & 0 & C - B \end{vmatrix} \left[\text{ Applying }R_2 \to R_1 + R_2 , R_3 \to R_2 + R_3 \right]\]
\[ = 8 \times \left\{ \left( A - B \right)\begin{vmatrix} 2B & A + B\\ 0 & C - B \end{vmatrix} + \left( 2B \right) \times \begin{vmatrix} C + B & B\\ 2B & A + B \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]
\[ = 16 B\left\{ \left( A - B \right)\left( C - B \right) + \left( C + B \right)\left( A + B \right) - 2 B^2 \right\}\]
\[ = 32 ABC\]
\[ = 32\left( \frac{b + c}{2} \right)\left( \frac{c + a}{2} \right)\left( \frac{a + b}{2} \right)\]
\[ = 4\left( a + b \right)\left( b + c \right)\left( c + a \right)\]
Hence, 4 is the other factor of the determinant .
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
Prove that :
Prove that :
3x + ay = 4
2x + ay = 2, a ≠ 0
3x + y = 5
− 6x − 2y = 9
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is