हिंदी

Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant The other factor in the value of the determinant is (a) 4 (b) 2 (c) a + b + c (d) none of these - Mathematics

Advertisements
Advertisements

प्रश्न

Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is

विकल्प

  • 4

  • 2

  • a + b + c

  • none of these

MCQ

उत्तर

\[\Delta = \begin{vmatrix} - 2a & a + b & a + c\\b + a & - 2b & b + c\\c + a & c + b & - 2c \end{vmatrix}
\text{ Let } a + b = 2C, b + c = 2A\text{ and }c + a = 2B . \]

\[ \Rightarrow a + b + b + c + c + a = 2A + 2B + 2C\]

\[ \Rightarrow 2\left( a + b + c \right) = 2\left( A + B + C \right)\]

\[ \Rightarrow a + b + c = A + B + C\]

Also,

\[a = \left( a + b + c \right) - \left( b + c \right) = \left( A + B + C \right) - 2A = B + C - A\]

Similarly, 

\[b = C + A - B, c = A + B - C\]

\[\Delta = \begin{vmatrix} 2A - 2B - 2C & 2C & 2B\\ 2C & 2B - 2C - 2A & 2A\\ 2B & 2A & 2C - 2A - 2B \end{vmatrix} = 8 \times \begin{vmatrix} A - B - C & C & B\\ C & B - C - A & A\\ B & A & C - A - B \end{vmatrix} \left[\text{ taking out 2 common from }R_1 R_2 R_3 \right]\]
\[ = 8 \times \begin{vmatrix} A - B & C + B & B\\ B - A & B - C & A\\ B + A & C - B & C - A - B \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 , C_2 \to C_2 + C_3 \right]\]

\[ = 8 \times \begin{vmatrix} \left( A - B \right) & C + B & B\\ 0 & 2B & A + B\\ 2B & 0 & C - B \end{vmatrix} \left[\text{ Applying }R_2 \to R_1 + R_2 , R_3 \to R_2 + R_3 \right]\]
\[ = 8 \times \left\{ \left( A - B \right)\begin{vmatrix} 2B & A + B\\ 0 & C - B \end{vmatrix} + \left( 2B \right) \times \begin{vmatrix} C + B & B\\ 2B & A + B \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]

\[ = 16 B\left\{ \left( A - B \right)\left( C - B \right) + \left( C + B \right)\left( A + B \right) - 2 B^2 \right\}\]

\[ = 32 ABC\]

\[ = 32\left( \frac{b + c}{2} \right)\left( \frac{c + a}{2} \right)\left( \frac{a + b}{2} \right)\]

\[ = 4\left( a + b \right)\left( b + c \right)\left( c + a \right)\]

Hence, 4 is the other factor of the determinant .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.7 [पृष्ठ ९४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.7 | Q 10 | पृष्ठ ९४

संबंधित प्रश्न

Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.

 

Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Find values of k, if area of triangle is 4 square units whose vertices are 
(k, 0), (4, 0), (0, 2)


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


3x + ay = 4
2x + ay = 2, a ≠ 0


3x + y = 5
− 6x − 2y = 9


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]


If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.


x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×