Advertisements
Advertisements
प्रश्न
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
उत्तर
\[∆ = \begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix}\]
\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 & c^2 \\ a^2 & b^2 + c^2 & a^2 \\ b^2 & b^2 & c^2 + a^2\end{vmatrix} \left[\text{ Multiplying }R_1 , R_2 \text{ and }R_3\text{ by c, a and b and then dividing by abc }\right]\]
\[ = \frac{1}{abc}\begin{vmatrix}a^2 + b^2 & c^2 - a^2 - b^2 & c^2 - a^2 - b^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }C_2\text{ to }C_2 - C_1\text{ and }C_3\text{ to }C_3 - C_1 \right]\]
\[ = \frac{1}{abc}\begin{vmatrix}0 & - 2 b^2 & - 2 a^2 \\ a^2 & b^2 + c^2 - a^2 & 0 \\ b^2 & 0 & c^2 + a^2 - b^2\end{vmatrix} \left[\text{ Applying }R_1\text{ to }R_1 - R_2 - R_3 \right]\]
\[ = \frac{1}{abc}[ - a^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ 0 & c^2 + a^2 - b^2\end{vmatrix} + b^2 \begin{vmatrix}- 2 b^2 & - 2 a^2 \\ b^2 + c^2 - a^2 & 0\end{vmatrix} \left[\text{ Expanding along }C_1 \right]\]
\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 ( c^2 + a^2 - b^2 ) \right\} + b^2 \left\{ 0 + 2 a^2 \left( b^2 + c^2 - a^2 \right) \right\} \right]\]
\[ = \frac{1}{abc}\left[ - a^2 \left\{ - 2 b^2 c^2 - 2 b^2 a^2 + 2 b^4 \right\} + b^2 \left\{ 2 a^2 b^2 + 2 a^2 c^2 - 2 a^4 \right\} \right]\]
\[ = \frac{1}{abc}\left[ 2 a^2 b^2 c^2 + 2 a^4 b^2 - 2 a^2 b^4 + 2 a^2 b^4 + 2 a^2 b^2 c^2 - 2 a^4 b^2 \right]\]
\[ = \frac{1}{abc}4 a^2 b^2 c^2 = 4abc\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Prove that :
Prove that
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.