हिंदी

Solve the Following System of Equations by Matrix Method: X − Y + Z = 2 2x − Y = 0 2y − Z = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1

उत्तर

Here, 
A=[111210021]
|A|=|111210021|
=1(10)+1(20)+1(40)
=12+4
=3
 Let Cij be the cofactors of the elements a ij in A[aij]. Then,
C11=(1)1+1|1021|=1,C12=(1)1+2|2001|=2,C13=(1)1+3|2102|=4
C21=(1)2+1|1121|=1,C22=(1)2+2|1101|=1,C23=(1)2+3|1102|=2
C31=(1)3+1|1110|=1,C32=(1)3+2|1120|=2,C33=(1)3+3|1121|=1
adjA=[124112121]T
=[111212421]
A1=1|A|adjA
=11[111212421]
X=A1B
[xyz]=13[111212421][201]
[xyz]=13[2+14+28+1]
[xyz]=11[369]
x=33,y=63 and z=93
x=1,y=2 and z=3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.1 | पृष्ठ १४

संबंधित प्रश्न

Examine the consistency of the system of equations.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =32

3y – 5z = 9


Find the value of x, if

|2x58x|=|6583|


Evaluate the following determinant:

|1352610311138|


Without expanding, show that the value of the following determinant is zero:

|6322121052|


Evaluate :

|1abc1bca1cab|


If=|1xx21yy21zz2|,1=|111yzzxxyxyz|, then prove that +1=0.


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Prove that :

|11+p1+p+q23+2p4+3p+2q36+3p10+6p+3q|=1

 


|1aa2a21aaa21|=(a31)2

|a+b+ccbca+b+cabaa+b+c|=2(a+b)(b+c)(c+a)

x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


Evaluate |4785478747894791|


If A=[aij]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

Write the value of 

|sin20cos20sin70cos70|

If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


If |2x58x|=|6273| , write the value of x.


If |2x58x|=|6273| , then x = 

 


Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2


Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


If A=[120213021] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

If A=[342235101] , find A−1 and hence solve the following system of equations: 

If A=[120212011] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


Given A=[224424215],B=[110234012] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4


x + y = 1
x + z = − 6
x − y − 2z = 3


Find the inverse of the following matrix, using elementary transformations: 

A=[231241372]


The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


Show that if the determinant ∆ = |3-2sin3θ-78cos2θ-11142| = 0, then sinθ = 0 or 12.


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


The number of real value of 'x satisfying |x3x+22x-12x-14x3x+17x-217x+612x-1| = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.