Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
उत्तर
Here,
\[A = \begin{bmatrix}2 & 6 & 0 \\ 3 & 0 & - 1 \\ 2 & - 1 & 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & 6 & 0 \\ 3 & 0 & - 1 \\ 2 & - 1 & 1\end{vmatrix}\]
\[ = 2\left( 0 - 1 \right) - 6\left( 3 + 2 \right) + 0( - 3 + 0)\]
\[ = - 2 - 30\]
\[ = - 32\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & - 1 \\ - 1 & 1\end{vmatrix} = - 1 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & - 1 \\ 2 & 1\end{vmatrix} = - 5 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 0 \\ 2 & - 1\end{vmatrix} = - 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}6 & 0 \\ - 1 & 1\end{vmatrix} = - 6 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 0 \\ 2 & 1\end{vmatrix} = 2 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 6 \\ 2 & - 1\end{vmatrix} = 14\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}6 & 0 \\ 0 & - 1\end{vmatrix} = - 6 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 0 \\ 3 & - 1\end{vmatrix} = 2 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 6 \\ 3 & 0\end{vmatrix} = - 18\]
\[adj A = \begin{bmatrix}- 1 & - 5 & - 3 \\ - 6 & 2 & 14 \\ - 6 & 2 & - 18\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 1 & - 6 & - 6 \\ - 5 & 2 & 2 \\ - 3 & 14 & - 18\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 32}\begin{bmatrix}- 1 & - 6 & - 6 \\ - 5 & 2 & 2 \\ - 3 & 14 & - 18\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 32}\begin{bmatrix}- 1 & - 6 & - 6 \\ - 5 & 2 & 2 \\ - 3 & 14 & - 18\end{bmatrix}\begin{bmatrix}2 \\ - 8 \\ - 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 32}\begin{bmatrix}- 2 + 48 + 18 \\ - 10 - 16 - 6 \\ - 6 - 112 + 54\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 32}\begin{bmatrix}64 \\ - 32 \\ - 64\end{bmatrix}\]
\[ \Rightarrow x = \frac{64}{- 32}, y = \frac{- 32}{- 32}\text{ and }z = \frac{- 64}{- 32}\]
\[ \therefore x = - 2, y = 1\text{ and }z = 2\]
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
3x + ay = 4
2x + ay = 2, a ≠ 0
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
If A is a singular matrix, then write the value of |A|.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
The value of the determinant
The value of the determinant
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.