हिंदी

5x − 7y + Z = 11 6x − 8y − Z = 15 3x + 2y − 6z = 7 - Mathematics

Advertisements
Advertisements

प्रश्न

5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7

उत्तर

Given: 5x − 7y + z = 11
           6x − 8y − z = 15
           3x + 2y − 6z = 7

\[D = \begin{vmatrix}5 & - 7 & 1 \\ 6 & - 8 & - 1 \\ 3 & 2 & - 6\end{vmatrix}\] 
\[ = 5(48 + 2) + 7( - 36 + 3) + 1(12 + 24)\] 
\[ = 5(50) + 7( - 33) + 1(36)\] 
\[ = 55\] 
\[ D_1 = \begin{vmatrix}11 & - 7 & 1 \\ 15 & - 8 & - 1 \\ 7 & 2 & - 6\end{vmatrix}\] 
\[ = 11(48 + 2) + 7( - 90 + 7) + 1(30 + 56)\] 
\[ = 11(50) + 7( - 83) + 1(86)\] 
\[ = 55\] 
\[ D_2 = \begin{vmatrix}5 & 11 & 1 \\ 6 & 15 & - 1 \\ 3 & 7 & - 6\end{vmatrix}\] 
\[ = 5( - 90 + 7) - 11( - 36 + 3) + 1(42 - 45)\] 
\[ = 5( - 83) - 11( - 33) + 1( - 3)\] 
\[ = - 55\] 
\[ D_3 = \begin{vmatrix}5 & - 7 & 11 \\ 6 & - 8 & 15 \\ 3 & 2 & 7\end{vmatrix}\] 
\[ = 5( - 56 - 30) + 7(42 - 45) + 11(12 + 24)\] 
\[ = 5( - 86) + 7( - 3) + 11(36)\] 
\[ = - 55\] 
Now, 
\[x = \frac{D_1}{D} = \frac{55}{55} = 1\] 
\[y = \frac{D_2}{D} = \frac{- 55}{55} = - 1\] 
\[z = \frac{D_3}{D} = \frac{- 55}{55} = - 1\] 
\[ \therefore x = 1, y = - 1\text{ and }z = - 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.4 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.4 | Q 16 | पृष्ठ ८४

संबंधित प्रश्न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3


Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


If \[a, b\] and c  are all non-zero and 

\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c\end{vmatrix} =\] 0, then prove that 
\[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} +\]1
= 0

 


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]


2x − y = − 2
3x + 4y = 3


9x + 5y = 10
3y − 2x = 8


Given: x + 2y = 1
            3x + y = 4


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×