मराठी

5x − 7y + Z = 11 6x − 8y − Z = 15 3x + 2y − 6z = 7 - Mathematics

Advertisements
Advertisements

प्रश्न

5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7

उत्तर

Given: 5x − 7y + z = 11
           6x − 8y − z = 15
           3x + 2y − 6z = 7

\[D = \begin{vmatrix}5 & - 7 & 1 \\ 6 & - 8 & - 1 \\ 3 & 2 & - 6\end{vmatrix}\] 
\[ = 5(48 + 2) + 7( - 36 + 3) + 1(12 + 24)\] 
\[ = 5(50) + 7( - 33) + 1(36)\] 
\[ = 55\] 
\[ D_1 = \begin{vmatrix}11 & - 7 & 1 \\ 15 & - 8 & - 1 \\ 7 & 2 & - 6\end{vmatrix}\] 
\[ = 11(48 + 2) + 7( - 90 + 7) + 1(30 + 56)\] 
\[ = 11(50) + 7( - 83) + 1(86)\] 
\[ = 55\] 
\[ D_2 = \begin{vmatrix}5 & 11 & 1 \\ 6 & 15 & - 1 \\ 3 & 7 & - 6\end{vmatrix}\] 
\[ = 5( - 90 + 7) - 11( - 36 + 3) + 1(42 - 45)\] 
\[ = 5( - 83) - 11( - 33) + 1( - 3)\] 
\[ = - 55\] 
\[ D_3 = \begin{vmatrix}5 & - 7 & 11 \\ 6 & - 8 & 15 \\ 3 & 2 & 7\end{vmatrix}\] 
\[ = 5( - 56 - 30) + 7(42 - 45) + 11(12 + 24)\] 
\[ = 5( - 86) + 7( - 3) + 11(36)\] 
\[ = - 55\] 
Now, 
\[x = \frac{D_1}{D} = \frac{55}{55} = 1\] 
\[y = \frac{D_2}{D} = \frac{- 55}{55} = - 1\] 
\[z = \frac{D_3}{D} = \frac{- 55}{55} = - 1\] 
\[ \therefore x = 1, y = - 1\text{ and }z = - 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.4 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.4 | Q 16 | पृष्ठ ८४

संबंधित प्रश्‍न

If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Show that x = 2 is a root of the equation

\[\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix} = 0\]  and solve it completely.
 

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


2x − y = 17
3x + 5y = 6


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]


If xyare different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is





Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×