Advertisements
Advertisements
प्रश्न
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
उत्तर
Given: 2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
\[D = \begin{vmatrix}2 & - 3 & - 4 \\ - 2 & 5 & - 1 \\ 3 & - 1 & 5\end{vmatrix}\]
\[ = 2(25 - 1) + 3( - 10 + 3) - 4(2 - 15)\]
\[ = 2(24) + 3( - 7) - 4( - 13)\]
\[ = 79\]
\[ D_1 = \begin{vmatrix}29 & - 3 & - 4 \\ - 15 & 5 & - 1 \\ - 11 & - 1 & 5\end{vmatrix}\]
\[ = 29(25 - 1) + 3( - 75 - 11) - 4(15 + 55)\]
\[ = 29(24) + 3( - 86) - 4(70)\]
\[ = 158\]
\[ D_2 = \begin{vmatrix}2 & 29 & - 4 \\ - 2 & - 15 & - 1 \\ 3 & - 11 & 5\end{vmatrix}\]
\[ = 2( - 75 - 11) - 29( - 10 + 3) - 4(22 + 45)\]
\[ = 2( - 86) - 29( - 7) - 4(67)\]
\[ = - 237\]
\[ D_3 = \begin{vmatrix}2 & - 3 & 29 \\ - 2 & 5 & - 15 \\ 3 & - 1 & - 11\end{vmatrix}\]
\[ = 2( - 55 - 15) + 3(22 + 45) + 29(2 - 15)\]
\[ = 2( - 70) + 3(67) + 29( - 13)\]
\[ = - 316\]
Now,
\[x = \frac{D_1}{D} = \frac{158}{79} = 2\]
\[y = \frac{D_2}{D} = \frac{- 237}{79} = - 3\]
\[z = \frac{D_3}{D} = \frac{- 316}{79} = - 4\]
\[ \therefore x = 2, y = - 3\text{ and }z = - 4\]
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
2x − y = − 2
3x + 4y = 3
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.