Advertisements
Advertisements
प्रश्न
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
उत्तर
Here,
x + y − 6z = 0 ...(1)
x − y + 2z = 0 ...(2)
−3x + y + 2z = 0 ...(3)
The given system of homogeneous equations can be written in matrix form as follows:
\[\begin{bmatrix}1 & 1 & - 6 \\ 1 & - 1 & 2 \\ - 3 & 1 & 2\end{bmatrix} \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[AX = O\]
Here,
\[A = \begin{bmatrix}1 & 1 & - 6 \\ 1 & - 1 & 2 \\ - 3 & 1 & 2\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }O = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & 1 & - 6 \\ 1 & - 1 & 2 \\ - 3 & 1 & 2\end{vmatrix}\]
\[ = 1\left( - 2 - 2 \right) - 1\left( 2 + 6 \right) - 6(1 - 3)\]
\[ = - 4 - 8 + 12\]
\[ = 0\]
\[\therefore\left| A \right|= 0\]
So, the given systemof homogeneous equations has non-trivial solution.
Substituting z=k in eq. (1) and eq. (2), we get
\[x + y = 6k\text{ and }x - y = - 2k\]
\[AX = B\]
Here,
\[A=\begin{bmatrix}1 & 1 \\ 1 & - 1\end{bmatrix},X=\binom{x}{y}\text{ and }B = \binom{6k}{ - 2k}\]
\[ \Rightarrow \begin{bmatrix}1 & 1 \\ 1 & - 1\end{bmatrix}\binom{x}{y} = \binom{6k}{ - 2k}\]
Now,
\[\left| A \right|=\begin{vmatrix}1 & 1 \\ 1 & - 1\end{vmatrix}\]
\[ = \left( 1 \times - 1 - 1 \times 1 \right)\]
\[ =-2\]
\[So, A^{- 1}\text{ exists }. \]
We have
\[adjA=\begin{bmatrix}- 1 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[ A^{- 1} =\frac{1}{\left| A \right|}adjA\]
\[ \Rightarrow A^{- 1} = \frac{1}{- 2}\begin{bmatrix}- 1 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{- 2}\begin{bmatrix}- 1 & - 1 \\ - 1 & 1\end{bmatrix}\binom{6k}{ - 2k}\]
\[ = \frac{1}{- 2}\binom{ - 6k + 2k}{ - 6k - 2k}\]
\[\text{ Thus, }x=2k,y=4k\text{ and }z=k\left(\text{ wherekis any real number }\right) \text{ satisfy the given system of equations. }\]
APPEARS IN
संबंधित प्रश्न
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Prove that :
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
Prove that :
Prove that :
Prove that :
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
x + 2y = 5
3x + 6y = 15
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.