Advertisements
Advertisements
प्रश्न
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} \left( b + c \right)^2 & a^2 & bc\\ \left( c + a \right)^2 & b^2 & ca\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix}\]
\[ = \begin{vmatrix} \left( b + c \right)^2 - \left( c + a \right)^2 & a^2 - b^2 & bc - ca\\ \left( c + a \right)^2 - \left( a + b \right)^2 & b^2 - c^2 & ca - ab\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right]\]
\[ = \begin{vmatrix} \left( b - a \right)\left( b + 2c + a \right) & \left( a + b \right) \left( a - b \right)b & c\left( b - a \right)\\ \left( c - b \right)\left( b + 2a + c \right) & \left( b - c \right) \left( b + c \right) & a\left( c - b \right)\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\begin{vmatrix} - \left( b + 2c + a \right) & a + b & - c \\ - \left( b + 2a + c \right) & b + c & - a\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }x^2 - y^2 = \left( x + y \right)\left( x - y \right)\text{ and taking out }\left( a - b \right)\text{ common from }R_1\text{ and }\left( b - c \right)\text{ from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} - 2\left( b + c + a \right) & a + b & - c \\ - 2\left( b + a + c \right) & b + c & - a\\ \left( a + b \right)^2 - c^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} - 2\left( b + c + a \right) & a + b & - c \\ - 2\left( b + a + c \right) & b + c & - a\\ \left( a + b + c \right) \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Applying }x^2 - y^2 = \left( x + y \right)\left( x - y \right)\text{ in }C_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right) \begin{vmatrix} - 2 & a + b & - c \\ - 2 & b + c & - a\\ \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Taking out }\left( a + b + c \right)\text{ common from }C_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\begin{vmatrix} - 2 & a + b & - c \\ 0 & c - a & c - a\\ \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\begin{vmatrix} - 2 & a + b & - c \\ 0 & 1 & 1\\\left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Taking out }\left( c - a \right)\text{ common from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\begin{vmatrix} - 2 & a + b + c & - c \\ 0 & 0 & 1\\\left( a + b - c \right) & c^2 - ab & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_3 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right) \left\{ \left( - 1 \right)\begin{vmatrix} - 2 & a + b + c \\\left( a + b - c \right) & c^2 - ab \end{vmatrix} \right\} \left[\text{ Expanding along }R_2 \right]\]
\[ = - \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left\{ - 2 c^2 + 2ab - a^2 - b^2 - 2ab + c^2 \right\}\]
\[ = - \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left( - a^2 - b^2 - c^2 \right)\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left( a^2 + b^2 + c^2 \right)\]
\[ = RHS\]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Solve the following determinant equation:
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.