Advertisements
Advertisements
Question
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} \left( b + c \right)^2 & a^2 & bc\\ \left( c + a \right)^2 & b^2 & ca\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix}\]
\[ = \begin{vmatrix} \left( b + c \right)^2 - \left( c + a \right)^2 & a^2 - b^2 & bc - ca\\ \left( c + a \right)^2 - \left( a + b \right)^2 & b^2 - c^2 & ca - ab\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right]\]
\[ = \begin{vmatrix} \left( b - a \right)\left( b + 2c + a \right) & \left( a + b \right) \left( a - b \right)b & c\left( b - a \right)\\ \left( c - b \right)\left( b + 2a + c \right) & \left( b - c \right) \left( b + c \right) & a\left( c - b \right)\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\begin{vmatrix} - \left( b + 2c + a \right) & a + b & - c \\ - \left( b + 2a + c \right) & b + c & - a\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }x^2 - y^2 = \left( x + y \right)\left( x - y \right)\text{ and taking out }\left( a - b \right)\text{ common from }R_1\text{ and }\left( b - c \right)\text{ from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} - 2\left( b + c + a \right) & a + b & - c \\ - 2\left( b + a + c \right) & b + c & - a\\ \left( a + b \right)^2 - c^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} - 2\left( b + c + a \right) & a + b & - c \\ - 2\left( b + a + c \right) & b + c & - a\\ \left( a + b + c \right) \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Applying }x^2 - y^2 = \left( x + y \right)\left( x - y \right)\text{ in }C_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right) \begin{vmatrix} - 2 & a + b & - c \\ - 2 & b + c & - a\\ \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Taking out }\left( a + b + c \right)\text{ common from }C_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\begin{vmatrix} - 2 & a + b & - c \\ 0 & c - a & c - a\\ \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\begin{vmatrix} - 2 & a + b & - c \\ 0 & 1 & 1\\\left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Taking out }\left( c - a \right)\text{ common from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\begin{vmatrix} - 2 & a + b + c & - c \\ 0 & 0 & 1\\\left( a + b - c \right) & c^2 - ab & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_3 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right) \left\{ \left( - 1 \right)\begin{vmatrix} - 2 & a + b + c \\\left( a + b - c \right) & c^2 - ab \end{vmatrix} \right\} \left[\text{ Expanding along }R_2 \right]\]
\[ = - \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left\{ - 2 c^2 + 2ab - a^2 - b^2 - 2ab + c^2 \right\}\]
\[ = - \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left( - a^2 - b^2 - c^2 \right)\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left( a^2 + b^2 + c^2 \right)\]
\[ = RHS\]
APPEARS IN
RELATED QUESTIONS
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Solve the following determinant equation:
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
3x + y = 5
− 6x − 2y = 9
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If A is a singular matrix, then write the value of |A|.
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
The value of the determinant
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Solve the following system of equations by matrix method:
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.