English

Prove that : ∣ ∣ ∣ ∣ ∣ 1 a 2 + B C a 3 1 B 2 + C a B 3 1 C 2 + a B C 3 ∣ ∣ ∣ ∣ ∣ = − ( a − B ) ( B − C ) ( C − a ) ( a 2 + B 2 + C 2 ) - Mathematics

Advertisements
Advertisements

Question

Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 

Solution

\[\text{ Let LHS }= \Delta = \begin{vmatrix} 1 & a^2 + bc & a^3 \\1 & b^2 + ca & b^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\] 
\[ \Rightarrow \Delta = \begin{vmatrix} 0 & \left( a^2 + bc \right) - \left( b^2 + ca \right) & a^3 - b^3 \\0 & \left( b^2 + ca \right) - \left( c^2 + ab \right) & b^3 - c^3 \\1 & c^2 + ab & c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right]\]
\[= \begin{vmatrix} 0 & a^2 - b^2 - ca + bc & a^3 - b^3 \\0 & b^2 - c^2 - ab + ca & b^3 - c^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\] 
\[ = \begin{vmatrix} 0 & \left( a - b \right)  \left( a + b - c \right) &\left( a - b \right)\left( a^2 + ab + b^2 \right)\\0 & \left( b - c \right)\left( b + c - a \right) & \left( b - c \right)\left( b^2 + bc + a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\] 
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) & \left( b^2 + bc + c^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Taking out }\left( a - b \right)\text{ common from }R_1\text{ and }\left( b - c \right)\text{ from }R_2 \right]\] 
\[ = \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) - \left( a + b - c \right) & \left( b^2 + bc + c^2 \right) - \left( a^2 + ab + b^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Applying }R \hspace{0.167em}_2 \to R_2 \hspace{0.167em} - R_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & 2 \left( c - a \right) & b\left( c - a \right) + \left( c^2 - a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\] 
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \begin{vmatrix}0 & a + b - c & a^2 + ab + b^2 \\0 & 2 & a + b + c\\1 & c^2 + ab & c^3 \end{vmatrix}\] 
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ 1 \times \begin{vmatrix} a + b - c & a^2 + ab + b^2 \\ 2 & a + b + c \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ \left( a + b \right)^2 - c^2 - \left( 2 a^2 + 2ab + 2 b^2 \right) \right\}\] 
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right)\left\{ \left( a + b \right)^2 - c^2 - \left( a + b \right)^2 - \left( a^2 + b^2 \right) \right\}\] 
\[ = - \left( a - b \right)\left( b - c \right)\left( c - a \right)\left( a^2 + b^2 + c^2 \right)\] 
\[ = RHS\]
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 23 | Page 59

RELATED QUESTIONS

Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


\[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.


A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×