Advertisements
Advertisements
Question
Prove that :
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} 1 & a^2 + bc & a^3 \\1 & b^2 + ca & b^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ \Rightarrow \Delta = \begin{vmatrix} 0 & \left( a^2 + bc \right) - \left( b^2 + ca \right) & a^3 - b^3 \\0 & \left( b^2 + ca \right) - \left( c^2 + ab \right) & b^3 - c^3 \\1 & c^2 + ab & c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right]\]
\[= \begin{vmatrix} 0 & a^2 - b^2 - ca + bc & a^3 - b^3 \\0 & b^2 - c^2 - ab + ca & b^3 - c^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \begin{vmatrix} 0 & \left( a - b \right) \left( a + b - c \right) &\left( a - b \right)\left( a^2 + ab + b^2 \right)\\0 & \left( b - c \right)\left( b + c - a \right) & \left( b - c \right)\left( b^2 + bc + a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) & \left( b^2 + bc + c^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Taking out }\left( a - b \right)\text{ common from }R_1\text{ and }\left( b - c \right)\text{ from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) - \left( a + b - c \right) & \left( b^2 + bc + c^2 \right) - \left( a^2 + ab + b^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Applying }R \hspace{0.167em}_2 \to R_2 \hspace{0.167em} - R_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & 2 \left( c - a \right) & b\left( c - a \right) + \left( c^2 - a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \begin{vmatrix}0 & a + b - c & a^2 + ab + b^2 \\0 & 2 & a + b + c\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ 1 \times \begin{vmatrix} a + b - c & a^2 + ab + b^2 \\ 2 & a + b + c \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ \left( a + b \right)^2 - c^2 - \left( 2 a^2 + 2ab + 2 b^2 \right) \right\}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right)\left\{ \left( a + b \right)^2 - c^2 - \left( a + b \right)^2 - \left( a^2 + b^2 \right) \right\}\]
\[ = - \left( a - b \right)\left( b - c \right)\left( c - a \right)\left( a^2 + b^2 + c^2 \right)\]
\[ = RHS\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.