Advertisements
Advertisements
प्रश्न
Prove that :
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} 1 & a^2 + bc & a^3 \\1 & b^2 + ca & b^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ \Rightarrow \Delta = \begin{vmatrix} 0 & \left( a^2 + bc \right) - \left( b^2 + ca \right) & a^3 - b^3 \\0 & \left( b^2 + ca \right) - \left( c^2 + ab \right) & b^3 - c^3 \\1 & c^2 + ab & c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right]\]
\[= \begin{vmatrix} 0 & a^2 - b^2 - ca + bc & a^3 - b^3 \\0 & b^2 - c^2 - ab + ca & b^3 - c^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \begin{vmatrix} 0 & \left( a - b \right) \left( a + b - c \right) &\left( a - b \right)\left( a^2 + ab + b^2 \right)\\0 & \left( b - c \right)\left( b + c - a \right) & \left( b - c \right)\left( b^2 + bc + a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) & \left( b^2 + bc + c^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Taking out }\left( a - b \right)\text{ common from }R_1\text{ and }\left( b - c \right)\text{ from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) - \left( a + b - c \right) & \left( b^2 + bc + c^2 \right) - \left( a^2 + ab + b^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Applying }R \hspace{0.167em}_2 \to R_2 \hspace{0.167em} - R_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & 2 \left( c - a \right) & b\left( c - a \right) + \left( c^2 - a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \begin{vmatrix}0 & a + b - c & a^2 + ab + b^2 \\0 & 2 & a + b + c\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ 1 \times \begin{vmatrix} a + b - c & a^2 + ab + b^2 \\ 2 & a + b + c \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ \left( a + b \right)^2 - c^2 - \left( 2 a^2 + 2ab + 2 b^2 \right) \right\}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right)\left\{ \left( a + b \right)^2 - c^2 - \left( a + b \right)^2 - \left( a^2 + b^2 \right) \right\}\]
\[ = - \left( a - b \right)\left( b - c \right)\left( c - a \right)\left( a^2 + b^2 + c^2 \right)\]
\[ = RHS\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Show that x = 2 is a root of the equation
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
3x + y = 5
− 6x − 2y = 9
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Write the value of
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.