मराठी

Prove the Following Identities: ∣ ∣ ∣ ∣ 2 Y Y − Z − X 2 Y 2 Z 2 Z Z − X − Y X − Y − Z 2 X 2 X ∣ ∣ ∣ ∣ = ( X + Y + Z ) 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identity:

\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]

उत्तर

\[LHS\]

\[ = \begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix}\]

\[ = \begin{vmatrix}2y + 2z + x - y - z & y - z - x + 2z + 2x & 2y + z - x - y + 2x \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} \left[\text{ Applying }R_1 \text{ to }R_1 + R_2 + R_3 \right]\]

\[ = \begin{vmatrix}x + y + z & x + y + z & x + y + z \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix}\]

\[ = \left( x + y + z \right)\begin{vmatrix}1 & 1 & 1 \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} \left[\text{ Taking }\left( x + y + z \right)\text{ common from }R_1 \right]\]

\[ = \left( x + y + z \right)\begin{vmatrix}0 & 1 & 1 \\ 0 & 2z & z - x - y \\ - x - y - z & 2x & 2x\end{vmatrix} \left[\text{ Applying }C_1 \text{ to }C_1 - C_2 \right]\]

\[ = \left( x + y + z \right)^2 \begin{vmatrix}0 & 1 & 1 \\ 0 & 2z & z - x - y \\ - 1 & 2x & 2x\end{vmatrix} \left[\text{ Taking }\left( x + y + z \right)\text{ common from }C_1 \right]\]

\[ = \left( x + y + z \right)^2 \left[ - 1\left( z - x - y - 2z \right) \right] \left[\text{ Expanding along first column }\right]\]

\[ = \left( x + y + z \right)^3 \]

\[ = RHS\]

\[ \therefore \begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.2 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.2 | Q 42 | पृष्ठ ६१

संबंधित प्रश्‍न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve system of linear equations, using matrix method.

5x + 2y = 3

3x + 2y = 5


Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

\[\begin{vmatrix}a + b + c & - c & - b \\ - c & a + b + c & - a \\ - b & - a & a + b + c\end{vmatrix} = 2\left( a + b \right) \left( b + c \right) \left( c + a \right)\]

5x + 7y = − 2
4x + 6y = − 3


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


xy = 5
y + z = 3
x + z = 4


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.

 

A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×