Advertisements
Advertisements
प्रश्न
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
उत्तर
Given: 6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
\[D = \begin{vmatrix}6 & 1 & - 3 \\ 1 & 3 & - 2 \\ 2 & 1 & 4\end{vmatrix}\]
\[ = 6(12 + 2) - 1(4 + 4) - 3(1 - 6)\]
\[ = 6(14) - 1(8) - 3( - 5)\]
\[ = 91\]
\[ D_1 = \begin{vmatrix}5 & 1 & - 3 \\ 5 & 3 & - 2 \\ 8 & 1 & 4\end{vmatrix}\]
\[ = 5(12 + 2) - 1(20 + 16) - 3(5 - 24)\]
\[ = 5(14) - 1(36) - 3( - 19)\]
\[ = 91\]
\[ D_2 = \begin{vmatrix}6 & 5 & - 3 \\ 1 & 5 & - 2 \\ 2 & 8 & 4\end{vmatrix}\]
\[ = 6(20 + 16) - 5(4 + 4) - 3(8 - 10)\]
\[ = 6(36) - 5(8) - 3( - 2)\]
\[ = 182\]
\[ D_3 = \begin{vmatrix}6 & 1 & 5 \\ 1 & 3 & 5 \\ 2 & 1 & 8\end{vmatrix}\]
\[ = 6(24 - 5) - 1(8 - 10) + 5(1 - 6)\]
\[ = 6(19) - 1( - 2) + 5( - 5)\]
\[ = 91\]
Now,
\[x = \frac{D_1}{D} = \frac{91}{91} = 1\]
\[y = \frac{D_2}{D} = \frac{182}{91} = 2\]
\[z = \frac{D_3}{D} = \frac{91}{91} = 1\]
\[ \therefore x = 1, y = 2\text{ and }z = 1\]
APPEARS IN
संबंधित प्रश्न
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Solve the following determinant equation:
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
Prove that :
2x − y = 17
3x + 5y = 6
9x + 5y = 10
3y − 2x = 8
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.