Advertisements
Advertisements
प्रश्न
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
उत्तर
Applying R2 → R2 + 4R1 and R3 → R3 + 7R1, we get
`|(3, -2, sin3theta),(5, 0, cos2theta + 4sin3theta = 0),(10, 0, 2 + 7sin3theta)|` = 0
or 2 [5(2 + 7 sin3θ) – 10(cos2θ + 4sin3θ)] = 0
or 2 + 7sin3θ – 2cos2θ – 8sin3θ = 0
or 2 – 2cos2θ – sin3θ = 0
sinθ (4sin2θ + 4sinθ – 3) = 0
or sinθ = 0 or (2sinθ – 1) = 0 or (2sinθ + 3) = 0
or sinθ = 0 or sinθ = `1/2` .....(why?)
APPEARS IN
संबंधित प्रश्न
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
The value of the determinant
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then