मराठी

Solve the Following System of Equations by Matrix Method: 3x + 4y + 2z = 8 2y − 3z = 3 X − 2y + 6z = −2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2

उत्तर

Here,
\[A = \begin{bmatrix}3 & 4 & 2 \\ 0 & 2 & - 3 \\ 1 & - 2 & 6\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}3 & 4 & 2 \\ 0 & 2 & - 3 \\ 1 & - 2 & 6\end{vmatrix}\]
\[ = 3\left( 12 - 6 \right) - 4\left( 0 + 3 \right) + 2(0 - 2)\]
\[ = 18 - 12 - 4\]
\[ = 2\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & - 3 \\ - 2 & 6\end{vmatrix} = 6, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}0 & - 3 \\ 1 & 6\end{vmatrix} = - 3 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}0 & 2 \\ 1 & - 2\end{vmatrix} = - 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}4 & 2 \\ - 2 & 6\end{vmatrix} = - 28 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}3 & 2 \\ 1 & 6\end{vmatrix} = 16 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}3 & 4 \\ 1 & - 2\end{vmatrix} = 10\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}4 & 2 \\ 2 & - 3\end{vmatrix} = - 16, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}3 & 2 \\ 0 & - 3\end{vmatrix} = 9, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}3 & 4 \\ 0 & 2\end{vmatrix} = 6\]
\[adj A = \begin{bmatrix}6 & - 3 & - 2 \\ - 28 & 16 & 10 \\ - 16 & 9 & 6\end{bmatrix}^T \]
\[ = \begin{bmatrix}6 & - 28 & - 16 \\ - 3 & 16 & 9 \\ - 2 & 10 & 6\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{2}\begin{bmatrix}6 & - 28 & - 16 \\ - 3 & 16 & 9 \\ - 2 & 10 & 6\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{2}\begin{bmatrix}6 & - 28 & - 16 \\ - 3 & 16 & 9 \\ - 2 & 10 & 6\end{bmatrix}\begin{bmatrix}8 \\ 3 \\ - 2\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{2}\begin{bmatrix}48 - 84 + 32 \\ - 24 + 48 - 18 \\ - 16 + 30 - 12\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{2}\begin{bmatrix}- 4 \\ 6 \\ 2\end{bmatrix}\]
\[ \Rightarrow x = \frac{- 4}{2}, y = \frac{6}{2}\text{ and }z = \frac{2}{2}\]
\[ \therefore x = - 2, y = 3\text{ and }z = 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.07 | पृष्ठ १४

संबंधित प्रश्‍न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Prove that :

\[\begin{vmatrix}\left( a + 1 \right) \left( a + 2 \right) & a + 2 & 1 \\ \left( a + 2 \right) \left( a + 3 \right) & a + 3 & 1 \\ \left( a + 3 \right) \left( a + 4 \right) & a + 4 & 1\end{vmatrix} = - 2\]

 


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]




Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×