Advertisements
Advertisements
प्रश्न
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
उत्तर
These equations can be written as
\[x + y + z = - 1\]
\[ax + by + cz = - d\]
\[ a^2 x + b^2 y + x^2 z = - d^2 \]
\[D = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix} \]
\[ = \begin{vmatrix}1 & 0 & 0 \\ a & a - b & b - c \\ a^2 & a^2 - b^2 & b^2 - c^2\end{vmatrix} \left[\text{ Applying }C_2 \to C_1 - C_2 , C_3 \to C_2 - C_3 \right]\]
\[\text{Taking (b - a) and (c - a) common from }C_1\text{ and }C_2 ,\text{ respectively, we get }\]
\[ = (a - b)(b - c)\begin{vmatrix}1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & a + b & b + c\end{vmatrix}\]
\[ = (a - b)(b - c)(c - a) \ldots(1)\]
\[ D_1 = \begin{vmatrix}- 1 & 1 & 1 \\ - d & b & c \\ - d^2 & b^2 & c^2\end{vmatrix} = - \begin{vmatrix}1 & 1 & 1 \\ d & b & c \\ d^2 & b^2 & c^2\end{vmatrix}\]
\[ D_1 = - (d - b) (b - c) (c - d) \left[\text{ Replacing a by d in eq }. (1) \right]\]
\[ D_2 = \begin{vmatrix}1 & - 1 & 1 \\ a & - d & c \\ a^2 & - d^2 & c^2\end{vmatrix} = - \begin{vmatrix}1 & 1 & 1 \\ a & d & c \\ a^2 & d^2 & c^2\end{vmatrix}\]
\[ D_2 = - (a - d)(d - c)(c - a) \left[\text{ Replacing b by d in eq }. (1) \right]\]
\[ D_3 = \begin{vmatrix}1 & 1 & - 1 \\ a & b & - d \\ a^2 & b^2 & - d^2\end{vmatrix} = - \begin{vmatrix}1 & 1 & 1 \\ a & b & d \\ a^2 & b^2 & d^2\end{vmatrix}\]
\[ D_3 = - (a - b)(b - d)(d - a) \left[\text{ Replacing c by d in eq }. (1) \right]\]
Thus,
\[x = \frac{D_1}{D} = - \frac{(d - b)(b - c)(c - d)}{(a - b)(b - c)(c - a)}\]
\[y = \frac{D_2}{D} = - \frac{(a - d)(d - c)(c - a)}{(a - b)(b - c)(c - a)}\]
\[z = \frac{D_3}{D} = - \frac{(a - b)(b - d)(d - a)}{(a - b)(b - c)(c - a)}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
Prove that :
Prove that
3x + y = 19
3x − y = 23
2x + 3y = 10
x + 6y = 4
Given: x + 2y = 1
3x + y = 4
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.