Advertisements
Advertisements
प्रश्न
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
उत्तर
\[∆ = \frac{1}{2}\begin{vmatrix}3 & 8 & 1 \\ - 4 & 2 & 1 \\ 5 & - 1 & 1\end{vmatrix} \]
\[ ∆ = \frac{1}{2}\begin{vmatrix}3 & 8 & 1 \\ - 7 & - 6 & 0 \\ 5 & - 1 & 1\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ ∆ = \frac{1}{2}\begin{vmatrix}3 & 8 & 1 \\ - 7 & - 6 & 0 \\ 2 & - 9 & 0\end{vmatrix} \left[\text{ Applying }R_3 \to R_3 - R_1 \right]\]
\[ ∆ = \frac{1}{2}\begin{vmatrix}- 7 & - 6 \\ 2 & - 9\end{vmatrix}\]
\[ ∆ = \frac{1}{2}\left( 63 + 12 \right)\]
\[ ∆ = \frac{1}{2}\left( 75 \right) = \frac{75}{2}\text{square units }\]
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
2x − y = 1
7x − 2y = −7
Prove that :
2x − y = 17
3x + 5y = 6
3x + ay = 4
2x + ay = 2, a ≠ 0
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.