Advertisements
Advertisements
प्रश्न
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
उत्तर
\[D = \begin{vmatrix}1 & 1 & 1 & 1 \\ 1 & - 2 & 2 & 2 \\ 2 & 1 & - 2 & 2 \\ 3 & - 1 & 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 2 & 2 & 2 \\ 1 & - 2 & 2 \\ - 1 & 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & 2 & 2 \\ 2 & - 2 & 2 \\ 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & 2 \\ 3 & - 1 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & - 2 \\ 3 & - 1 & 3\end{vmatrix}\]
\[ = 1\left[ - 2\left( 6 - 6 \right) - 2\left( - 3 + 2 \right) + 2\left( 3 - 2 \right) \right] - 1\left[ 1\left( 6 - 6 \right) - 2\left( - 6 - 6 \right) + 2\left( 6 + 6 \right) \right] + 1\left[ 1\left( - 3 + 2 \right) + 2\left( - 6 - 6 \right) + 2\left( - 2 - 3 \right) \right] - 1\left[ 1\left( 3 - 2 \right) + 2\left( 6 + 6 \right) + 2\left( - 2 - 3 \right) \right]\]
\[ = 4 - 48 - 35 - 15\]
\[ = - 94\]
\[ D_1 = \begin{vmatrix}2 & 1 & 1 & 1 \\ - 6 & - 2 & 2 & 2 \\ - 5 & 1 & - 2 & 2 \\ - 3 & - 1 & 3 & - 3\end{vmatrix}\]
\[2\begin{vmatrix}- 2 & 2 & 2 \\ 1 & - 2 & 2 \\ - 1 & 3 & - 3\end{vmatrix} - 1\begin{vmatrix}- 6 & 2 & 2 \\ - 5 & - 2 & 2 \\ - 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}- 6 & - 2 & 2 \\ - 5 & 1 & 2 \\ - 3 & - 1 & - 3\end{vmatrix} - 1\begin{vmatrix}- 6 & - 2 & 2 \\ - 5 & 1 & - 2 \\ - 3 & - 1 & 3\end{vmatrix}\]
\[ = 2\left[ - 2\left( 6 - 6 \right) - 2\left( - 3 + 2 \right) + 2\left( 3 - 2 \right) \right] - 1\left[ - 6\left( 6 - 6 \right) - 2\left( 15 + 6 \right) + 2\left( - 15 - 6 \right) \right] + 1\left[ - 6\left( - 3 + 2 \right) + 2\left( 15 + 6 \right) + 2\left( 5 + 3 \right) \right] - 1\left[ - 6\left( 3 - 2 \right) + 2\left( - 15 - 6 \right) + 2\left( 5 + 3 \right) \right]\]
\[ = 188\]
\[ D_2 = \begin{vmatrix}1 & 2 & 1 & 1 \\ 1 & - 6 & 2 & 2 \\ 2 & - 5 & - 2 & 2 \\ 3 & - 3 & 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 6 & 2 & 2 \\ - 5 & - 2 & 2 \\ - 3 & 3 & - 3\end{vmatrix} - 2\begin{vmatrix}1 & 2 & 2 \\ 2 & - 2 & 2 \\ 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}1 & - 6 & 2 \\ 2 & - 5 & 2 \\ 3 & - 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 6 & 2 \\ 2 & - 5 & - 2 \\ 3 & - 3 & 3\end{vmatrix}\]
\[1\left[ - 6\left( 6 - 6 \right) - 2\left( 15 + 6 \right) + 2\left( - 15 - 6 \right) \right] - 2\left[ 1\left( 6 - 6 \right) - 2\left( - 6 - 6 \right) + 2\left( 6 + 6 \right) \right] + 1\left[ 1\left( 15 + 6 \right) + 6\left( - 6 - 6 \right) + 2\left( - 6 + 15 \right) \right] - 1\left[ 1\left( - 15 - 6 \right) - 6\left( 6 + 6 \right) + 2\left( - 6 + 15 \right) \right]\]
\[ = 1\]
\[ D_3 = \begin{vmatrix}1 & 1 & 2 & 1 \\ 1 & - 2 & - 6 & 2 \\ 2 & 1 & - 5 & 2 \\ 3 & - 1 & - 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 2 & - 6 & 2 \\ 1 & - 5 & 2 \\ - 1 & - 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 6 & 2 \\ 2 & - 5 & 2 \\ 3 & - 3 & - 3\end{vmatrix} + 2\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & 2 \\ 3 & - 1 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 2 & - 6 \\ 2 & 1 & - 5 \\ 3 & - 1 & - 3\end{vmatrix}\]
\[ = 1\left[ - 2\left( 15 + 6 \right) + 6\left( - 3 + 2 \right) + 2\left( - 3 - 5 \right) \right] - 1\left[ 1\left( 15 + 6 \right) + 6\left( - 6 - 6 \right) + 2\left( - 6 + 15 \right) \right] + 2\left[ 1\left( - 3 + 2 \right) + 2\left( - 6 - 6 \right) + 2\left( - 2 - 3 \right) \right] - 1\left[ 1\left( - 3 - 5 \right) + 2\left( - 6 + 15 \right) - 6\left( - 2 - 3 \right) \right]\]
\[ = - 141\]
\[ D_4 = \begin{vmatrix}1 & 1 & 1 & 2 \\ 1 & - 2 & 2 & - 6 \\ 2 & 1 & - 2 & - 5 \\ 3 & - 1 & 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 2 & 2 & - 6 \\ 1 & - 2 & - 5 \\ - 1 & 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & 2 & - 6 \\ 2 & - 2 & - 5 \\ 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}1 & - 2 & - 6 \\ 2 & 1 & - 5 \\ 3 & - 1 & - 3\end{vmatrix} - 2\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & - 2 \\ 3 & - 1 & - 3\end{vmatrix}\]
\[1\left[ - 2\left( 6 + 15 \right) - 2\left( - 3 - 5 \right) - 6\left( 3 - 2 \right) \right] - 1\left[ 1\left( 6 + 15 \right) - 2\left( - 6 + 15 \right) - 6\left( 6 + 6 \right) \right] + 1\left[ 1\left( - 3 - 5 \right) + 2\left( - 6 + 15 \right) - 6\left( - 2 - 3 \right) \right] - 2\left[ 1\left( - 3 - 2 \right) + 2\left( - 6 + 6 \right) + 2\left( - 2 - 3 \right) \right]\]
\[ = 47\]
Thus,
\[x = \frac{D_1}{D} = \frac{188}{- 94} = - 2\]
\[y = \frac{D_2}{D} = \frac{- 282}{- 94} = 3\]
\[z = \frac{D_3}{D} = \frac{- 141}{- 94} = 1 . 5\]
\[w = \frac{D_4}{D} = \frac{47}{- 94} = - 0 . 5\]
APPEARS IN
संबंधित प्रश्न
The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.
The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.
Find the inverse of the matrix, `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.
The sum of three numbers is 9. If we multiply third number by 3 and add to the second number, we get 16. By adding the first and the third number and then subtracting twice the second number from this sum, we get 6. Use this information and find the system of linear equations. Hence, find the three numbers using matrices.
Express the following equations in the matrix form and solve them by method of reduction :
2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1
Using the properties of determinants, solve the following for x:
`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`
The cost of 2 books, 6 notebooks and 3 pens is Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.
Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`
Prove that :
2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1
In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:
Use elementary column operations \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .
If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices.
Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations : 3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.
Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.
Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.
Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`
Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`
Choose the correct alternative.
If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______
Choose the correct alternative.
If A = `[(2, 5),(1, 3)]`, then A–1 = _______
State whether the following is True or False :
Single element matrix is row as well as column matrix.
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
State whether the following statement is True or False:
After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`
For which values of xis the matrix
`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?
The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.
If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.
Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`
Find non-zero values of x satisfying the matrix equation:
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`
If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`
Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'
Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)
Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.
If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.
On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.
On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
A matrix denotes a number.
Two matrices are equal if they have same number of rows and same number of columns.
If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.
If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.
`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.
If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?
if `A = [(2,5),(1,3)] "then" A^-1` = ______
If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then" x = 1 "and" y = -1`