Advertisements
Advertisements
Question
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
Solution
\[D = \begin{vmatrix}1 & 1 & 1 & 1 \\ 1 & - 2 & 2 & 2 \\ 2 & 1 & - 2 & 2 \\ 3 & - 1 & 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 2 & 2 & 2 \\ 1 & - 2 & 2 \\ - 1 & 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & 2 & 2 \\ 2 & - 2 & 2 \\ 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & 2 \\ 3 & - 1 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & - 2 \\ 3 & - 1 & 3\end{vmatrix}\]
\[ = 1\left[ - 2\left( 6 - 6 \right) - 2\left( - 3 + 2 \right) + 2\left( 3 - 2 \right) \right] - 1\left[ 1\left( 6 - 6 \right) - 2\left( - 6 - 6 \right) + 2\left( 6 + 6 \right) \right] + 1\left[ 1\left( - 3 + 2 \right) + 2\left( - 6 - 6 \right) + 2\left( - 2 - 3 \right) \right] - 1\left[ 1\left( 3 - 2 \right) + 2\left( 6 + 6 \right) + 2\left( - 2 - 3 \right) \right]\]
\[ = 4 - 48 - 35 - 15\]
\[ = - 94\]
\[ D_1 = \begin{vmatrix}2 & 1 & 1 & 1 \\ - 6 & - 2 & 2 & 2 \\ - 5 & 1 & - 2 & 2 \\ - 3 & - 1 & 3 & - 3\end{vmatrix}\]
\[2\begin{vmatrix}- 2 & 2 & 2 \\ 1 & - 2 & 2 \\ - 1 & 3 & - 3\end{vmatrix} - 1\begin{vmatrix}- 6 & 2 & 2 \\ - 5 & - 2 & 2 \\ - 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}- 6 & - 2 & 2 \\ - 5 & 1 & 2 \\ - 3 & - 1 & - 3\end{vmatrix} - 1\begin{vmatrix}- 6 & - 2 & 2 \\ - 5 & 1 & - 2 \\ - 3 & - 1 & 3\end{vmatrix}\]
\[ = 2\left[ - 2\left( 6 - 6 \right) - 2\left( - 3 + 2 \right) + 2\left( 3 - 2 \right) \right] - 1\left[ - 6\left( 6 - 6 \right) - 2\left( 15 + 6 \right) + 2\left( - 15 - 6 \right) \right] + 1\left[ - 6\left( - 3 + 2 \right) + 2\left( 15 + 6 \right) + 2\left( 5 + 3 \right) \right] - 1\left[ - 6\left( 3 - 2 \right) + 2\left( - 15 - 6 \right) + 2\left( 5 + 3 \right) \right]\]
\[ = 188\]
\[ D_2 = \begin{vmatrix}1 & 2 & 1 & 1 \\ 1 & - 6 & 2 & 2 \\ 2 & - 5 & - 2 & 2 \\ 3 & - 3 & 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 6 & 2 & 2 \\ - 5 & - 2 & 2 \\ - 3 & 3 & - 3\end{vmatrix} - 2\begin{vmatrix}1 & 2 & 2 \\ 2 & - 2 & 2 \\ 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}1 & - 6 & 2 \\ 2 & - 5 & 2 \\ 3 & - 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 6 & 2 \\ 2 & - 5 & - 2 \\ 3 & - 3 & 3\end{vmatrix}\]
\[1\left[ - 6\left( 6 - 6 \right) - 2\left( 15 + 6 \right) + 2\left( - 15 - 6 \right) \right] - 2\left[ 1\left( 6 - 6 \right) - 2\left( - 6 - 6 \right) + 2\left( 6 + 6 \right) \right] + 1\left[ 1\left( 15 + 6 \right) + 6\left( - 6 - 6 \right) + 2\left( - 6 + 15 \right) \right] - 1\left[ 1\left( - 15 - 6 \right) - 6\left( 6 + 6 \right) + 2\left( - 6 + 15 \right) \right]\]
\[ = 1\]
\[ D_3 = \begin{vmatrix}1 & 1 & 2 & 1 \\ 1 & - 2 & - 6 & 2 \\ 2 & 1 & - 5 & 2 \\ 3 & - 1 & - 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 2 & - 6 & 2 \\ 1 & - 5 & 2 \\ - 1 & - 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 6 & 2 \\ 2 & - 5 & 2 \\ 3 & - 3 & - 3\end{vmatrix} + 2\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & 2 \\ 3 & - 1 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & - 2 & - 6 \\ 2 & 1 & - 5 \\ 3 & - 1 & - 3\end{vmatrix}\]
\[ = 1\left[ - 2\left( 15 + 6 \right) + 6\left( - 3 + 2 \right) + 2\left( - 3 - 5 \right) \right] - 1\left[ 1\left( 15 + 6 \right) + 6\left( - 6 - 6 \right) + 2\left( - 6 + 15 \right) \right] + 2\left[ 1\left( - 3 + 2 \right) + 2\left( - 6 - 6 \right) + 2\left( - 2 - 3 \right) \right] - 1\left[ 1\left( - 3 - 5 \right) + 2\left( - 6 + 15 \right) - 6\left( - 2 - 3 \right) \right]\]
\[ = - 141\]
\[ D_4 = \begin{vmatrix}1 & 1 & 1 & 2 \\ 1 & - 2 & 2 & - 6 \\ 2 & 1 & - 2 & - 5 \\ 3 & - 1 & 3 & - 3\end{vmatrix}\]
\[1\begin{vmatrix}- 2 & 2 & - 6 \\ 1 & - 2 & - 5 \\ - 1 & 3 & - 3\end{vmatrix} - 1\begin{vmatrix}1 & 2 & - 6 \\ 2 & - 2 & - 5 \\ 3 & 3 & - 3\end{vmatrix} + 1\begin{vmatrix}1 & - 2 & - 6 \\ 2 & 1 & - 5 \\ 3 & - 1 & - 3\end{vmatrix} - 2\begin{vmatrix}1 & - 2 & 2 \\ 2 & 1 & - 2 \\ 3 & - 1 & - 3\end{vmatrix}\]
\[1\left[ - 2\left( 6 + 15 \right) - 2\left( - 3 - 5 \right) - 6\left( 3 - 2 \right) \right] - 1\left[ 1\left( 6 + 15 \right) - 2\left( - 6 + 15 \right) - 6\left( 6 + 6 \right) \right] + 1\left[ 1\left( - 3 - 5 \right) + 2\left( - 6 + 15 \right) - 6\left( - 2 - 3 \right) \right] - 2\left[ 1\left( - 3 - 2 \right) + 2\left( - 6 + 6 \right) + 2\left( - 2 - 3 \right) \right]\]
\[ = 47\]
Thus,
\[x = \frac{D_1}{D} = \frac{188}{- 94} = - 2\]
\[y = \frac{D_2}{D} = \frac{- 282}{- 94} = 3\]
\[z = \frac{D_3}{D} = \frac{- 141}{- 94} = 1 . 5\]
\[w = \frac{D_4}{D} = \frac{47}{- 94} = - 0 . 5\]
APPEARS IN
RELATED QUESTIONS
Find the inverse of the matrix, `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.
The sum of three numbers is 9. If we multiply third number by 3 and add to the second number, we get 16. By adding the first and the third number and then subtracting twice the second number from this sum, we get 6. Use this information and find the system of linear equations. Hence, find the three numbers using matrices.
Express the following equations in the matrix form and solve them by method of reduction :
2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :
`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`
Using elementary transformations, find the inverse of the matrix A = `((8,4,3),(2,1,1),(1,2,2))`and use it to solve the following system of linear equations :
8x + 4y + 3z = 19
2x + y + z = 5
x + 2y + 2z = 7
Using properties of determinants, prove that :
`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`
Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`
Prove that :
2x − y = 5
4x − 2y = 7
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]
Use elementary column operations \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .
Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.
Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.
Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.
Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`
Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`
Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Choose the correct alternative.
If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______
Choose the correct alternative.
If A = `[(2, 5),(1, 3)]`, then A–1 = _______
State whether the following is True or False :
Single element matrix is row as well as column matrix.
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
For which values of xis the matrix
`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______
If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.
If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______
If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______
The inverse of a symmetric matrix is ______.
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: The number of elements
Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.
Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`
Find non-zero values of x satisfying the matrix equation:
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`
If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`
Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A
If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.
If A = `[(1, 5),(7, 12)]` and B `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.
Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.
On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.
On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.
If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.
If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?
If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then" x = 1 "and" y = -1`