English

2x − 3z + W = 1 X − Y + 2w = 1 − 3y + Z + W = 1 X + Y + Z = 1 - Mathematics

Advertisements
Advertisements

Question

2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1

Solution

\[D = \begin{vmatrix}2 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 2 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[2\begin{vmatrix}- 1 & 0 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 2 \\ 0 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\left[ - 1\left( 0 - 1 \right) - 0\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 0\left( 0 + 3 \right) \right]\] 
\[ = - 21\] 
\[ D_1 = \begin{vmatrix}1 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 2 \\ 1 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[1\begin{vmatrix}- 1 & 0 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 2 \\ 1 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 1 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 1\left[ - 1\left( 0 - 1 \right) - 0\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 1 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 1 + 3 \right) \right]\] 
\[ = - 21\] 
\[ D_2 = \begin{vmatrix}2 & 1 & - 3 & 1 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[ = 2\begin{vmatrix}1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} + ( - 3)\begin{vmatrix}1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[2\left[ 1\left( 0 - 1 \right) + 2\left( 1 - 1 \right) \right] - 1\left[ 1\left( 0 - 1 \right) + 2\left( 0 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) - 1\left( 0 - 1 \right) + 2\left( 0 - 1 \right) \right] - 1\left[ 1\left( 1 - 1 \right) - 1\left( 0 - 1 \right) \right]\] 
\[ = 6\] 
\[ D_3 = \begin{vmatrix}2 & 0 & 1 & 1 \\ 1 & - 1 & 1 & 2 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\] 
\[ = 2\begin{vmatrix}- 1 & 1 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 + 1\begin{vmatrix}1 & - 1 & 2 \\ 0 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 1 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\left[ - 1\left( 0 - 1 \right) - 1\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] + 1\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 1\left( 0 + 3 \right) \right]\] 
\[ = - 6\] 
\[ D_4 = \begin{vmatrix}2 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 1 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\begin{vmatrix}- 1 & 0 & 1 \\ - 3 & 1 & 1 \\ 1 & 1 & 1\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 1 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\] 
\[ = 2\left[ - 1\left( 1 - 1 \right) + 1\left( - 3 - 1 \right) \right] - 3\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 1\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) \right]\] 
\[ = 3\] 
So, by Cramer's rule , we obtain
\[x = \frac{D_1}{D} = \frac{21}{21} = 1\] 
\[y = \frac{D_2}{D} = \frac{6}{- 21} = - \frac{2}{7}\] 
\[z = \frac{D_3}{D} = \frac{- 6}{- 21} = \frac{2}{7}\] 
\[w = \frac{D_4}{D} = \frac{3}{- 21} = - \frac{1}{7}\] 
\[\text{ Hence,} x = 1, y = - \frac{2}{7}, z = \frac{2}{7}, w = - \frac{1}{7}\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.4 [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.4 | Q 21 | Page 84

RELATED QUESTIONS

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.


Express the following equations in the matrix form and solve them by method of reduction :

2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1


If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations


Using the properties of determinants, solve the following for x:

`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`


Using elementary transformations, find the inverse of the matrix A =  `((8,4,3),(2,1,1),(1,2,2))`and use it to solve the following system of linear equations :

8x + 4y + 3z = 19

2xyz = 5

x + 2y + 2z = 7


The cost of 2 books, 6 notebooks and 3 pens is  Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.


Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`


Prove that :

\[\begin{vmatrix}a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a\end{vmatrix} = 9 \left( a + b \right) b^2\]

 


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


2x − y = 5
4x − 2y = 7


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.


Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`


Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`


Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Choose the correct alternative.

If A = `[(2, 5),(1, 3)]`, then A–1 = _______


Fill in the blank :

Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______


If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.


The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______


If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______ 


If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______ 


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______


The inverse of a symmetric matrix is ______.


If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12 


Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.


Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`


Find non-zero values of x satisfying the matrix equation:

`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'


If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.


If A = `[(1, 5),(7, 12)]` and B  `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.


Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.


On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.


Two matrices are equal if they have same number of rows and same number of columns.


If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.


If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

What is the maximum value of f(x)?


If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then"  x = 1  "and"  y = -1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×