Advertisements
Advertisements
प्रश्न
2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1
उत्तर
\[D = \begin{vmatrix}2 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 2 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\]
\[2\begin{vmatrix}- 1 & 0 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 2 \\ 0 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\]
\[ = 2\left[ - 1\left( 0 - 1 \right) - 0\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 0\left( 0 + 3 \right) \right]\]
\[ = - 21\]
\[ D_1 = \begin{vmatrix}1 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 2 \\ 1 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\]
\[1\begin{vmatrix}- 1 & 0 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 2 \\ 1 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 1 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\]
\[ = 1\left[ - 1\left( 0 - 1 \right) - 0\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 1 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 1 + 3 \right) \right]\]
\[ = - 21\]
\[ D_2 = \begin{vmatrix}2 & 1 & - 3 & 1 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\]
\[ = 2\begin{vmatrix}1 & 0 & 2 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} + ( - 3)\begin{vmatrix}1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{vmatrix}\]
\[2\left[ 1\left( 0 - 1 \right) + 2\left( 1 - 1 \right) \right] - 1\left[ 1\left( 0 - 1 \right) + 2\left( 0 - 1 \right) \right] - 3\left[ 1\left( 0 - 1 \right) - 1\left( 0 - 1 \right) + 2\left( 0 - 1 \right) \right] - 1\left[ 1\left( 1 - 1 \right) - 1\left( 0 - 1 \right) \right]\]
\[ = 6\]
\[ D_3 = \begin{vmatrix}2 & 0 & 1 & 1 \\ 1 & - 1 & 1 & 2 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 0\end{vmatrix}\]
\[ = 2\begin{vmatrix}- 1 & 1 & 2 \\ - 3 & 1 & 1 \\ 1 & 1 & 0\end{vmatrix} - 0 + 1\begin{vmatrix}1 & - 1 & 2 \\ 0 & - 3 & 1 \\ 1 & 1 & 0\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 1 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\]
\[ = 2\left[ - 1\left( 0 - 1 \right) - 1\left( 0 - 1 \right) + 2\left( - 3 - 1 \right) \right] + 1\left[ 1\left( 0 - 1 \right) + 1\left( 0 - 1 \right) + 2\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 1\left( 0 + 3 \right) \right]\]
\[ = - 6\]
\[ D_4 = \begin{vmatrix}2 & 0 & - 3 & 1 \\ 1 & - 1 & 0 & 1 \\ 0 & - 3 & 1 & 1 \\ 1 & 1 & 1 & 1\end{vmatrix}\]
\[ = 2\begin{vmatrix}- 1 & 0 & 1 \\ - 3 & 1 & 1 \\ 1 & 1 & 1\end{vmatrix} - 0 - 3\begin{vmatrix}1 & - 1 & 1 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix} - 1\begin{vmatrix}1 & - 1 & 0 \\ 0 & - 3 & 1 \\ 1 & 1 & 1\end{vmatrix}\]
\[ = 2\left[ - 1\left( 1 - 1 \right) + 1\left( - 3 - 1 \right) \right] - 3\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) + 1\left( 0 + 3 \right) \right] - 1\left[ 1\left( - 3 - 1 \right) + 1\left( 0 - 1 \right) \right]\]
\[ = 3\]
So, by Cramer's rule , we obtain
\[x = \frac{D_1}{D} = \frac{21}{21} = 1\]
\[y = \frac{D_2}{D} = \frac{6}{- 21} = - \frac{2}{7}\]
\[z = \frac{D_3}{D} = \frac{- 6}{- 21} = \frac{2}{7}\]
\[w = \frac{D_4}{D} = \frac{3}{- 21} = - \frac{1}{7}\]
\[\text{ Hence,} x = 1, y = - \frac{2}{7}, z = \frac{2}{7}, w = - \frac{1}{7}\]
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix, `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.
Express the following equations in the matrix form and solve them by method of reduction :
2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :
`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`
For what values of k, the system of linear equations
x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4
has a unique solution?
If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations
Using the properties of determinants, solve the following for x:
`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`
Using properties of determinants, prove that :
`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`
Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`
Prove that :
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]
Use elementary column operations \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .
If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices.
Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.
Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`
Choose the correct alternative.
If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______
Fill in the blank :
Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______
State whether the following is True or False :
Single element matrix is row as well as column matrix.
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
State whether the following statement is True or False:
After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`
The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to.
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______
If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______
If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.
If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______
If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______
The inverse of a symmetric matrix is ______.
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12
Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`
Find non-zero values of x satisfying the matrix equation:
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')
If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.
If A = `[(1, 5),(7, 12)]` and B `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.
If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)
Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.
On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
A matrix denotes a number.
Two matrices are equal if they have same number of rows and same number of columns.
If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.
`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?