Advertisements
Advertisements
प्रश्न
Fill in the blank :
Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______
उत्तर
Order of matrix `[(2, 1, 1),(5, 1, 8)]` is 2 x 3.
APPEARS IN
संबंधित प्रश्न
Using properties of determinants, prove that :
`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`
2x − y = 5
4x − 2y = 7
Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`
If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.
`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.
if `A = [(2,5),(1,3)] "then" A^-1` = ______