मराठी

If A = [0-1243-4] and B = [401326], then verify that: (A′)′ = (AB)' = B'A' - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'

बेरीज

उत्तर

Given that: A = `[(0, -1, 2),(4, 3, -4)]`, B = `[(4, 0),(1, 3),(2, 6)]`

L.H.S. AB = `[(0,-1, 2),(4, 3, -4)]_(2 xx 3) [(4, 0),(1, 3),(2, 6)]_(3 xx 2)`

= `[(0 - 1+ 4, 0 - 3 + 12),(16 + 3 - 8, 0 + 9 - 24)]_(2 xx 2)`

= `[(3, 9),(11, -15)]_(2 xx 2)`

(AB)' = `[(3, 11),(9, -15)]_(2 xx 2)`

R.H.S. B' = `[(4, 0),(1, 3),(2, 6)]^'`

= `[(4, 1, 2),(0, 3, 6)]`

A' = `[(0, -1, 2),(4, 3, -4)]^'`

= `[(0, 4),(-1, 3),(2, -4)]`

B'A' = `[(4, 1, 2),(0, 3, 6)]_(2 xx 3)  [(0, 4),(-1, 3),(2, -4)]_(3 xx 2)`

= `[(0 - 1 + 4, 16 + 3 - 8),(0 - 3 + 12, 0 + 9 - 24)]_(2 xx 2)`

= `[(3, 11),(9, -15)]_(2 xx 2)`

L.H.S. = R.H.S.

Hence, (AB)' = B'A' is verified.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 27. (ii) | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.


The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.


Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.


The sum of three numbers is 9. If we multiply third number by 3 and add to the second number, we get 16. By adding the first and the third number and then subtracting twice the second number from this sum, we get 6. Use this information and find the system of linear equations. Hence, find the three numbers using matrices.


For what values of k, the system of linear equations

x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4

has a unique solution?

 


Using elementary transformations, find the inverse of the matrix A =  `((8,4,3),(2,1,1),(1,2,2))`and use it to solve the following system of linear equations :

8x + 4y + 3z = 19

2xyz = 5

x + 2y + 2z = 7


Using properties of determinants, prove that :

`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`


Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`


Prove that :

\[\begin{vmatrix}a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a\end{vmatrix} = 9 \left( a + b \right) b^2\]

 


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


In the following matrix equation use elementary operation R2 → R2 + Rand the equation thus obtained:

\[\begin{bmatrix}2 & 3 \\ 1 & 4\end{bmatrix} \begin{bmatrix}1 & 0 \\ 2 & - 1\end{bmatrix} = \begin{bmatrix}8 & - 3 \\ 9 & - 4\end{bmatrix}\]

Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.


Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.


Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`


Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`


Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`


State whether the following is True or False :

Single element matrix is row as well as column matrix.


Choose the correct alternative:

If A = `[(1, 2),(2, -1)]`, then adj (A) = ______


Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular


State whether the following statement is True or False:

After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


For which values of xis the matrix

`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?


If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______


If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______


If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______ 


If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?


Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.


Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A


If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.


If A = `[(1, 5),(7, 12)]` and B  `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.


Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`


If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.


If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.


On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.


If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.


If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×