Advertisements
Advertisements
प्रश्न
Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`
उत्तर
The co-factor Aij of aij is equal to (– 1)i+j Mij.
Here, a11 = 5
∴ M11 = `|(-2, 1),(1, 1)|` = – 2 – 1 = – 3
and A11 = (– 1)1+1 M11 = (1) (– 3) = – 3
a12 = 8
∴ M12 = `|(-1, 1),(-2, 1)|` = – 1 + 2 = 1
and A12 = (– 1)1+2 M11 = (–1) (1) = – 1
a13 = 7
∴ M13 = `|(-1, -2),(-2, 1)|` = – 1 – 4 = – 5
and A13 = (– 1)1+3 M13 = (1) (– 5) = – 5
a21 = – 1
∴ M21 = `|(8, 7),(1, 1)|` = 8 – 7 = 1
and A21 = (– 1)2+1 M21 = (– 1) (1) = – 1
a22 = – 2
∴ M22 = `|(5, 7),(-2, 1)|` = 5 + 14 = 19
and A22 = (– 1)2+2 M22 = (– 1) (19) = 19
a23 = 1
∴ M23 = `|(5, 8),(-2, 1)|` = 5 + 16 = 21
and A23 = (– 1)2+3 M23 = (– 1) (21) = – 21
a31 = – 2
∴ M31 = `|(8, 7),(-2, 1)|` = 8 + 14 = 22
and A31 = (– 1)3+2 M31 = (1) (22) = 22
a32 = 1
∴ M32 = `|(5, 7),(-1, 1)|` = 5 + 7 = 12
and A32 = (– 1)3+2 M32 = (– 1) (12) = – 12
a33 = 1
∴ M33 = `|(5, 8),(-1, -2)|` = – 10 + 8 = – 2
and A33 = (– 1)3+3 M33 = (1) (– 2) = – 2
∴ The matrix of the co-factors is
[Aij]3x3 = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]`
= `[(-3, -1, -5),(-1, 19, -21),(22, -12, -2)]`.
APPEARS IN
संबंधित प्रश्न
Prove that :
x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3
Use elementary column operations \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .
Choose the correct alternative:
If A = `[(1, 2),(2, -1)]`, then adj (A) = ______
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to.
The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______
Find the matrix A satisfying the matrix equation:
`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`
If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.
Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
Two matrices are equal if they have same number of rows and same number of columns.
If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.