मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find the cofactor matrix, of the following matrices: [587-1-21-211] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`

बेरीज

उत्तर

The co-factor Aij of aij is equal to (– 1)i+j Mij.
Here, a11 = 5

∴ M11 = `|(-2, 1),(1, 1)|` = – 2 – 1 = – 3
and A11 = (– 1)1+1 M11 = (1) (– 3) = – 3
a12 = 8

∴ M12 = `|(-1, 1),(-2, 1)|` = – 1  + 2 = 1
and A12 = (– 1)1+2 M11 = (–1) (1) = – 1
a13 = 7

∴ M13 = `|(-1, -2),(-2, 1)|` = – 1  – 4 = – 5
and A13 = (– 1)1+3 M13 = (1) (– 5) = – 5
a21 = – 1

∴ M21 = `|(8, 7),(1, 1)|` = 8  – 7 = 1
and A21 = (– 1)2+1 M21 = (– 1) (1) = – 1
a22 = – 2

∴ M22 = `|(5, 7),(-2, 1)|` = 5  + 14 = 19
and A22 = (– 1)2+2 M22 = (– 1) (19) = 19
a23 = 1

∴ M23 = `|(5, 8),(-2, 1)|` = 5  + 16 = 21
and A23 = (– 1)2+3 M23 = (– 1) (21) = – 21
a31 = – 2

∴ M31 = `|(8, 7),(-2, 1)|` = 8  + 14 = 22
and A31 = (– 1)3+2 M31 = (1) (22) = 22
a32 = 1

∴ M32 = `|(5, 7),(-1, 1)|` = 5  + 7 = 12
and A32 = (– 1)3+2 M32 = (– 1) (12) = – 12
a33 = 1

∴ M33 = `|(5, 8),(-1, -2)|` = – 10 + 8 = – 2
and A33 = (– 1)3+3 M33 = (1) (– 2) = – 2

∴ The matrix of the co-factors is

[Aij]3x3 = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]`

= `[(-3, -1, -5),(-1, 19, -21),(22, -12, -2)]`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.5 [पृष्ठ ७२]

संबंधित प्रश्‍न

Prove that :

\[\begin{vmatrix}a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a\end{vmatrix} = 9 \left( a + b \right) b^2\]

 


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


Choose the correct alternative:

If A = `[(1, 2),(2, -1)]`, then adj (A) = ______


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.


If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______


If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______ 


If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______ 


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______ 


Find the matrix A satisfying the matrix equation:

`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`


If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.


Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


Two matrices are equal if they have same number of rows and same number of columns.


If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×