मराठी

Using elementary transformations, find the inverse of the matrix A =  ((8,4,3),(2,1,1),(1,2,2)) and use it to solve the following system of linear equations - Mathematics

Advertisements
Advertisements

प्रश्न

Using elementary transformations, find the inverse of the matrix A =  `((8,4,3),(2,1,1),(1,2,2))`and use it to solve the following system of linear equations :

8x + 4y + 3z = 19

2xyz = 5

x + 2y + 2z = 7

उत्तर

A = IA

i.e

`[(8,4,3),(2,1,1),(1,2,2)]=[(1,0,0),(0,1,0),(0,0,1)]A`

Applying R1R3, we get

`[(1,2,2),(2,1,1),(8,4,3)]=[(0,0,1),(0,1,0),(1,0,0)]A`

Applying R2R22R1, we get

`[(1,2,2),(0,-3,-3),(8,4,3)]=[(0,0,1),(0,1,-2),(1,0,0)]A`

Applying R3R38R1, we get

`[(1,2,1),(0,-3,-3),(0,-12,-13)]=[(0,0,1),(0,1,-2),(1,0,-8)]A`

Applying R2→ `(R_2)/(−3)`, we get

`[(1,2,2),(0,1,1),(0,-12,-13)]=[(0,0,1),(0,-1/3,2/3),(1,0,-8)]A`

Applying R1R12R2, we get

`[(1,0,0),(0,1,1),(0,-12,-13)]=[(0,2/3,-1/3),(0,-1/2,2/3),(1,0,-8)]A`

Applying R3R3+12R2, we get

`[(1,0,0),(0,1,1),(0,0,-1)]=[(0,2/3,-1/3),(0,-1/3,2/3),(1,-4,0)]A`

Applying R3R3 and R2R2R3, we get

`[(1,0,0),(0,1,0),(0,0,1)]=[(0,2/3,-1/3),(1,-13/3,2/3),(-1,4,0)]A`

Thus, we have

`A^(-1)=[(0,2/3,-1/3),(1,-13/3,2/3),(-1,4,0)]`

The given system of equations is

8x+4y+3z=19

2x+y+z=5

x+2y+2z=7

This system of equations can be written as AX = B, where `A=[(8,4,3),(2,1,1),(1,2,2)],X=[(x),(y),(z)]`

 X=A1B

`=>[(x),(y),(z)]=[(0,2/3,-1/3),(1,-13/3,2/3),(-1,4,0)][(19),(5),(7)]`

`=>[(x),(y),(z)][(1+10/3-7/3),(19-65/2+14/3),(-19+20+0)]=[(1),(2),(1)]`

x=1, y=2 and z=1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.


Solve the following equations by the method of reduction :

2x-y + z=1,  x + 2y +3z = 8, 3x + y-4z=1.


Express the following equations in the matrix form and solve them by method of reduction :

2x- y + z = 1, x + 2y + 3z = 8, 3x + y - 4z =1


Use elementary column operation C2 → C2 + 2C1 in the following matrix equation :

`[[2,1],[2,0]] = [[3,1],[2,0]] [[1,0],[-1,1]]`


If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations


Using the properties of determinants, solve the following for x:

`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`


Using properties of determinants, prove that :

`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`


Prove that :

\[\begin{vmatrix}a & a + b & a + 2b \\ a + 2b & a & a + b \\ a + b & a + 2b & a\end{vmatrix} = 9 \left( a + b \right) b^2\]

 


In the following matrix equation use elementary operation R2 → R2 + Rand the equation thus obtained:

\[\begin{bmatrix}2 & 3 \\ 1 & 4\end{bmatrix} \begin{bmatrix}1 & 0 \\ 2 & - 1\end{bmatrix} = \begin{bmatrix}8 & - 3 \\ 9 & - 4\end{bmatrix}\]

Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]


If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices. 


Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations :  3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.


Apply the given elementary transformation on each of the following matrices `[(3, -4),(2, 2)]`, R1 ↔ R2.


Transform `[(1, -1, 2),(2, 1, 3),(3, 2, 4)]` into an upper traingular matrix by suitable row transformations.


Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Fill in the blank :

Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______


State whether the following is True or False :

Single element matrix is row as well as column matrix.


Solve the following :

If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.


Choose the correct alternative:

If A = `[(1, 2),(2, -1)]`, then adj (A) = ______


State whether the following statement is True or False:

After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`


If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to. 


If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______ 


If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.


Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.


Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`


Find non-zero values of x satisfying the matrix equation:

`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'


If A = `[(1, 5),(7, 12)]` and B  `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.


Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`


If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)


Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.


On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.


On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.


Two matrices are equal if they have same number of rows and same number of columns.


If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x


if `A = [(2,5),(1,3)] "then" A^-1` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×