Advertisements
Advertisements
प्रश्न
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
उत्तर
Order of matrix `[(2, -1),(1, 0),(-3, 4)]` is 3 × 2 and the matrix
`[(-1, -8, -10),(1, -2, -5),(9, 22, 15)]` is 3 × 3
∴ Order of matrix A must be 2 × 3
Let A = `[("a", "b", "c"),("d", "e", "f")]_(2 xx 3)`
So, `[(2, -1),(1, 0),(-3, 4)] [("a", "b", "c"),("d", "e", "f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
`[(2"a" - "d", 2"b" - "e", 2"c" - "f"),("a" + 0, "b" + 0, "c" + 0),(-3"a" + 4"d", -3"b" + 4"e", -3"c" + 4"f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 5)]`
Equating the corresponding elements, we get,
2a – d = – 1 and a = 1
⇒ 2 × 1 – d = – 1
⇒ d = 2 + 1
⇒ d = 3
2b – e = – 8 and b = – 2
⇒ 2(– 2) – e
⇒ – 8
⇒ – 4 – e = – 8
⇒ e = 4
2c – f = – 10 and c = – 5
⇒ 2(– 5) – f = – 10
⇒ – 10 – f = – 10
⇒ f = 0
a = 1, b = – 2, c = – 5, d = 3, e = 4 and f = 0
Hence, A = `[(1, -2, -5),(3, 4, 0)]`.
APPEARS IN
संबंधित प्रश्न
The cost of 4 pencils, 3 pens and 2 erasers is Rs. 60. The cost of 2 pencils, 4 pens and 6 erasers is Rs. 90 whereas the cost of 6 pencils, 2 pens and 3 erasers is Rs. 70. Find the cost of each item by using matrices.
Find the inverse of the matrix, `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.
For what values of k, the system of linear equations
x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4
has a unique solution?
Using the properties of determinants, solve the following for x:
`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`
Use elementary column operations \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .
Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.
Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.
Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`
Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Choose the correct alternative.
If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______
If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______
The inverse of a symmetric matrix is ______.
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12
Construct a 3 × 2 matrix whose elements are given by aij = ei.x sinjx.
Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`
Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'
If A = `[(1, 5),(7, 12)]` and B `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.
Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.
On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
Two matrices are equal if they have same number of rows and same number of columns.
If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.
If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.
If A = `[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)],` then ____________.
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?
if `A = [(2,5),(1,3)] "then" A^-1` = ______
If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then" x = 1 "and" y = -1`