Advertisements
Advertisements
प्रश्न
Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
उत्तर
Let A = `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Here,
a11 = 1
∴ M11 = `|(3, 5),(0, -1)|` = – 3 – 0 = – 3
and A11 = (– 1)1+1 (– 3) = – 3
a12 = – 1
∴ M12 = `|(-2, 5),(-2, -1)|` = 2 + 10 = 12
and A12 = (– 1)1+2 (12) = – 12
a13 = 2
∴ M13 = `|(-2, 3),(-2, 0)|` = 0 + 6 = 6
and A13 = (– 1)1+3 (6) = 6
a21 = – 2
∴ M21 = `|(-1, 2),(0, -1)|` = 1 – 0 = 1
and A21 = (– 1)2+1 (1) = – 1
a22 = 3
∴ M22 = `|(1, 2),(-2, -1)|` = – 1 + 4 = 3
and A22 = (– 1)2+2 (3) = 3
a23 = 5
∴ M23 = `|(1, -1),(-2, 0)|` = 0 – 2 = – 2
and A23 = (– 1)2+3 (– 2) = 2
a31 = – 2
∴ M31 = `|(-1, 2),(3, 5)|` = –5 – 6 = – 11
and A31 = (– 1)3+1 (– 11) = – 11
a32 = 0
∴ M32 = `|(1, 2),(-2, 5)|` = 5 + 4 = 9
and A32 = (– 1)3+2 (9) = – 9
a33 = – 1
∴ M33 = `|(1, -1),(-2, 3)|` = 3 – 2 = 1
and A33 = (– 1)3+3 (1) = 1
∴ The matrix of the co-factors is
[Aij]3x3 = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]`
= `[(3, -12, 6),(-1, 3, 2),(-11, -9, 1)]`
Now, adj A = `["A"_"ij"]_(3xx3)^"T" = [(-3, -1, -11),(-12, 3, -9),(6, 2, 1)]`.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by the method of reduction :
2x-y + z=1, x + 2y +3z = 8, 3x + y-4z=1.
If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations
Using the properties of determinants, solve the following for x:
`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`
2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1
In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]
State whether the following is True or False :
Single element matrix is row as well as column matrix.
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to.
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______
Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?
If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then" x = 1 "and" y = -1`