मराठी

If P(x) = [cosxsinx-sinxcosx], then show that P(x) . (y) = P(x + y) = P(y) . P(x) - Mathematics

Advertisements
Advertisements

प्रश्न

If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)

बेरीज

उत्तर

We have, P(x) = `[(cosx, six),(-sinx, cosx)]`

∴ P(y) = `[(cosy, siny),(-siny, cosy)]`

Now, 

 P(x) . P(y) = `[(cosx, sinx),(-sinx, cosx)] [(cosy, siny),(-siny, cosy)]`

= `[(cosx * cosy - sinx * siny, cosx * siny + sinx * cosy),(-sinx * cosy - cosx * siny, -sinx * siny + cosx * cosy)]`

= `[(cos(x + y), sin(x + y)),(-sin(x + y), cos(x + y))]`

= P(x + y) ......(i)

Also,

P(y) . P(x) = `[(cosy, siny),(-siny, cos y)] [(cosx, sinx),(-sinx, cosx)]`

= `[(cosy * cosx - siny * sinx, cosy * sinx + siny * cosx),(-siny * cosx - sinx * cosy, -siny * sinx + cosy * cosx)]`

= `[(cos(x + y), sin(x + y)),(-sin(x + y), cos(x + y))]`  .....(ii)

Thus, from (i) and (ii), we get

P(x) . (y) = P(x + y) = P(y) . P(x)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 46 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.


Find the inverse of the matrix,  `A=[[1,3,3],[1,4,3],[1,3,4]]`by using column transformations.


If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations


Prove that  `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.


Using properties of determinants, prove that :

`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`


The cost of 2 books, 6 notebooks and 3 pens is  Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.


Using elementary row transformations, find the inverse of the matrix A = `[(1,2,3),(2,5,7),(-2,-4,-5)]`


x + y + z + w = 2
x − 2y + 2z + 2w = − 6
2x + y − 2z + 2w = − 5
3x − y + 3z − 3w = − 3


2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1


2x − y = 5
4x − 2y = 7


In the following matrix equation use elementary operation R2 → R2 + Rand the equation thus obtained:

\[\begin{bmatrix}2 & 3 \\ 1 & 4\end{bmatrix} \begin{bmatrix}1 & 0 \\ 2 & - 1\end{bmatrix} = \begin{bmatrix}8 & - 3 \\ 9 & - 4\end{bmatrix}\]

Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.


Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.


Transform `[(1, -1, 2),(2, 1, 3),(3, 2, 4)]` into an upper traingular matrix by suitable row transformations.


Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`


Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`


Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`


Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Fill in the blank :

Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______


State whether the following is True or False :

Single element matrix is row as well as column matrix.


Choose the correct alternative:

If A = `[(1, 2),(2, -1)]`, then adj (A) = ______


Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.


If A = `[(a, 0, 0), (0, a, 0), (0, 0, a)]`, then the value of |A| |adj A| is ______ 


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If `[(2, 3), (3, 1)][(x), (y)] = [(-5), (3)]`, then the values of x and y respectively are ______


If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______ 


Find the values of a and b if A = B, where A = `[("a" + 4, 3"b"),(8, -6)]`, B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]`


Find non-zero values of x satisfying the matrix equation:

`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = (AB)' = B'A'


If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')


Find the values of a, b, c and d, if `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`


Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`


Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


If possible, using elementary row transformations, find the inverse of the following matrices

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


On using elementary column operations C2 → C2 – 2C1 in the following matrix equation `[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, we have: ______.


On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.


In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.


Two matrices are equal if they have same number of rows and same number of columns.


If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.


If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

What is the maximum value of f(x)?


if `A = [(2,5),(1,3)] "then" A^-1` = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×