मराठी

If A is square matrix such that A2 = A, show that (I + A)3 = 7A + I.. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is square matrix such that A2 = A, show that (I + A)3 = 7A + I..

बेरीज

उत्तर

We know that,

A . I = I . A

So, A and I are commutative.

Thus, we can expand (I + A)3 like real numbers expansion.

So, (I + A)3 = I+ 3I2A + 3IA2 + A3

= I + 3IA + 3A+ AA2  .....(As I= I, n ∈ N)

= I + 3A + 3A + AA

= I + 3A + 3A + A2 

= I + 3A + 3A + A

= I + 7A

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Matrices - Exercise [पृष्ठ ५८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 3 Matrices
Exercise | Q 47 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×