English

If A is square matrix such that A2 = A, show that (I + A)3 = 7A + I.. - Mathematics

Advertisements
Advertisements

Question

If A is square matrix such that A2 = A, show that (I + A)3 = 7A + I..

Sum

Solution

We know that,

A . I = I . A

So, A and I are commutative.

Thus, we can expand (I + A)3 like real numbers expansion.

So, (I + A)3 = I+ 3I2A + 3IA2 + A3

= I + 3IA + 3A+ AA2  .....(As I= I, n ∈ N)

= I + 3A + 3A + AA

= I + 3A + 3A + A2 

= I + 3A + 3A + A

= I + 7A

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Matrices - Exercise [Page 58]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 3 Matrices
Exercise | Q 47 | Page 58

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×