Advertisements
Advertisements
प्रश्न
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
उत्तर
Given that B is a skew-symmetric matrix
∴ B' = – B
Let P = A'BA
⇒ P' = (A'BA)'
= A'B'(A')' .....[(AB)' = B'A']
= A'(– B) A
= – A'BA
= – P
So P' = – P
Hence, A'BA is a skew-symmetric matrix.
APPEARS IN
संबंधित प्रश्न
If A= `((3,5),(7,9))`is written as A = P + Q, where P is a symmetric matrix and Q is skew symmetric matrix, then write the matrix P.
If `A = [(-1,2,3),(5,7,9),(-2,1,1)] "and" B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A+ B)' = A' + B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
If A is a square matrix, then AA is a
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
The matrix \[A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{bmatrix}\] is
If the matrix `((6,-"x"^2),(2"x"-15 , 10))` is symmetric, find the value of x.
If A and B are symmetric matrices of the same order, then (AB′ –BA′) is a ______.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is a skew-symmetric matrix, then A2 is a ______.
If A is symmetric matrix, then B′AB is ______.
AA′ is always a symmetric matrix for any matrix A.
If A `= [(6,8,5),(4,2,3),(9,7,1)]` is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is ____________.
If A = [aij] is a skew-symmetric matrix of order n, then ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
If A and B are symmetric matrices of the same order, then AB – BA is ______.