Advertisements
Advertisements
प्रश्न
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
उत्तर
Given, A = `[(0,1,-1),(-1,0,1),(1,-1,0)]`
So, -A = `[(0,-1,1),(1,0,-1),(-1,1,0)] =- [(0,1,-1),(-1,0,1),(1,-1,0)]`
∵ A' = -A, Hence, it is proved that the matrix
A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
APPEARS IN
संबंधित प्रश्न
Matrix A = `[(0,2b,-2),(3,1,3),(3a,3,-1)]`is given to be symmetric, find values of a and b
If A is a skew symmetric matric of order 3, then prove that det A = 0
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
If A = `[(cos alpha, sin alpha), (-sin alpha, cos alpha)]` then verify that A' A = I
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
For the matrix A = `[(1,5),(6,7)]` verify that (A - A') is a skew symmetric matrix.
Find `1/2` (A + A') and `1/2` (A -A') When `A = [(0, a, b),(-a,0,c),(-b,-c,0)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,3,-1),(-2,-2,1),(-4,-5,2)]`
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
If the matrix A is both symmetric and skew symmetric, then ______.
Write a square matrix which is both symmetric as well as skew-symmetric.
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
Express the matrix A as the sum of a symmetric and a skew-symmetric matrix, where A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
Show that A′A and AA′ are both symmetric matrices for any matrix A.
If A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`, and A–1 = A′, find value of α
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
If A and B are symmetric matrices, then AB – BA is a ______.
If A is symmetric matrix, then B′AB is ______.
If A and B are symmetric matrices of same order, then AB is symmetric if and only if ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If A and B are symmetric matrices of the same order, then ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
Let A = `[(2, 3),(a, 0)]`, a ∈ R be written as P + Q where P is a symmetric matrix and Q is skew-symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to ______.
The value of |A|, if A = `[(0, 2x - 1, sqrt(x)),(1 - 2x, 0, 2sqrt(x)),(-sqrt(x), -2sqrt(x), 0)]`, where x ∈ R+, is ______.